A218387 Decimal expansion of the spanning tree constant of the square lattice.
1, 1, 6, 6, 2, 4, 3, 6, 1, 6, 1, 2, 3, 2, 7, 5, 1, 2, 0, 5, 5, 3, 5, 3, 7, 8, 2, 5, 8, 7, 3, 5, 7, 9, 6, 7, 5, 4, 5, 6, 2, 6, 4, 6, 1, 5, 9, 4, 3, 3, 4, 9, 0, 8, 1, 0, 4, 4, 0, 0, 6, 2, 7, 6, 4, 4, 6, 9, 9, 0, 5, 4, 7, 5, 2, 1, 7, 5, 5, 4, 4, 6, 9, 0, 6, 5, 0, 7, 2, 9, 7, 2, 1, 2, 5, 3, 6, 2, 3, 5, 6, 3, 5, 8, 9, 1, 2, 1, 1, 1, 1, 5, 1
Offset: 1
Examples
1.16624361612327512055353782587357967545626461594...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.7 and 5.22.6, pp. 54, 399.
- Asmus L. Schmidt, Ergodic theory of complex continued fractions, Number Theory with an Emphasis on the Markoff Spectrum, in: A. D. Pollington and W. Moran (eds.), Number Theory with an Emphasis on the Markoff Spectrum, Dekker, 1993, pp. 215-226.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Anthony J. Guttmann, Spanning tree generating functions and Mahler measure, arXiv:1207.2815 [math-ph], 2012.
- Sheldon Yang, Some properties of Catalan's constant G, Internat. J. Math. Ed. Sci. Tech. 23 (4) (1992) 549-556, L*(1).
Programs
-
Magma
R:= RealField(100); 4*Catalan(R)/Pi(R); // G. C. Greubel, Aug 23 2018
-
Maple
evalf(Catalan*4/Pi) ;
-
Mathematica
RealDigits[4*Catalan/Pi, 10, 100][[1]] (* G. C. Greubel, Aug 23 2018 *)
-
PARI
default(realprecision, 100); 4*Catalan/Pi \\ G. C. Greubel, Aug 23 2018
Formula
From Amiram Eldar, Jul 22 2020: (Start)
Equals 1 + Sum_{k>=1} (2*k-1)!!^2/((2*k)!!^2 * (2*k + 1)).
Equals Sum_{k>=0} binomial(2*k,k)^2/(16^k * (2*k + 1)). (End)
Equals (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)^2) / (Sum_{n>=1} (-1)^(n+1)/(2*n - 1)) [Schmidt] (see Finch). - Stefano Spezia, Nov 07 2024
Equals Integral_{x=0..1} EllipticK(x)/(Pi*sqrt(x)) dx. - Kritsada Moomuang, Jun 21 2025