A219086 a(n) = floor((n + 1/2)^4).
0, 5, 39, 150, 410, 915, 1785, 3164, 5220, 8145, 12155, 17490, 24414, 33215, 44205, 57720, 74120, 93789, 117135, 144590, 176610, 213675, 256289, 304980, 360300, 422825, 493155, 571914, 659750, 757335, 865365, 984560, 1115664
Offset: 0
Examples
0^(1/4) = 0.000...; 1^(1/4) = 1.000... 5^(1/4) = 1.495...; 6^(1/4) = 1.565... 39^(1/4) = 2.499...; 40^(1/4) = 2.514...
Links
- Clark Kimberling, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Maple
A219086:=n->floor((n + (1/2))^4); seq(A219086(n), n=0..50); # Wesley Ivan Hurt, Apr 05 2014
-
Mathematica
Table[Floor[(n + 1/2)^4], {n, 0, 100}] LinearRecurrence[{5,-10,10,-5,1},{0,5,39,150,410},40] (* Harvey P. Dale, Jan 15 2023 *)
-
PARI
a(n)=floor((n + 1/2)^4) \\ Charles R Greathouse IV, Apr 15 2014
Formula
G.f.: (5*x^3 + 14*x^2 + 5*x)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = (2*n^4 + 4*n^3 + 3*n^2 + n)/2. - J. M. Bergot, Apr 05 2014
a(n) = Sum_{i=0..n} i*(4*i^2 + 1) = n*(n + 1)*(2*n^2 + 2*n + 1)/2. - Bruno Berselli, Feb 09 2017
a(n) = lcm((2*n + 1)^2 - 1, (2*n + 1)^2 + 1)/8 for n>=1. - Lechoslaw Ratajczak, Mar 26 2017
E.g.f.: (1/2)*exp(x)*x*(10 + 29*x + 16*x^2 + 2*x^3). - Stefano Spezia, Dec 27 2019
a(n) = ((2*n+1)^4 - 1)/16. - Jianing Song, Jan 03 2023
Sum_{n>=1} 1/a(n) = 6 - 2*Pi*tanh(Pi/2). - Amiram Eldar, Jan 08 2023
Comments