cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219191 Numbers of the form k*(7*k+1), where k = 0,-1,1,-2,2,-3,3,...

Original entry on oeis.org

0, 6, 8, 26, 30, 60, 66, 108, 116, 170, 180, 246, 258, 336, 350, 440, 456, 558, 576, 690, 710, 836, 858, 996, 1020, 1170, 1196, 1358, 1386, 1560, 1590, 1776, 1808, 2006, 2040, 2250, 2286, 2508, 2546, 2780, 2820, 3066, 3108, 3366, 3410, 3680, 3726, 4008
Offset: 1

Views

Author

Bruno Berselli, Nov 14 2012

Keywords

Comments

Equivalently, numbers m such that 28*m+1 is a square.
Also, integer values of h*(h+1)/7.
Let F(r) = Product_{n >= 1} 1 - q^(14*n-r). The sequence terms are the exponents in the expansion of F(0)*F(6)*F(8) = 1 - q^6 - q^8 + q^26 + q^30 - q^60 - q^66 + + - - ... (by the triple product identity).- Peter Bala, Dec 25 2024

Crossrefs

Cf. numbers of the form k*(i*k+1) with k in A001057: i=0, A001057; i=1, A110660; i=2, A000217; i=3, A152749; i=4, A074378; i=5, A219190; i=6, A036498; i=7, this sequence; i=8, A154260.
Cf. A113801 (square roots of 28*a(n)+1, see the comment).
Cf. similar sequences listed in A219257.
Subsequence of A011860.

Programs

  • Magma
    k:=7; f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..25]];
    
  • Magma
    I:=[0,6,8,26,30]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A := proc (q) local n; for n from 0 to q do if type(sqrt(28*n+1), integer) then print(n) fi; od; end: A(4100); # Peter Bala, Dec 25 2024
  • Mathematica
    Rest[Flatten[{# (7 # - 1), # (7 # + 1)} & /@ Range[0, 25]]]
    CoefficientList[Series[2 x (3 + x + 3 x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,6,8,26,30},50] (* Harvey P. Dale, Sep 14 2022 *)

Formula

G.f.: 2*x^2*(3+x+3*x^2)/((1+x)^2*(1-x)^3).
a(n) = a(-n+1) = (14*n*(n-1)+5*(-1)^n*(2*n-1)+5)/8.
a(n) = 2*A057570(n) = (1/7)*A047335(n)*A047274(n+1).
Sum_{n>=2} 1/a(n) = 7 - cot(Pi/7)*Pi. - Amiram Eldar, Mar 17 2022