cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A219257 Numbers k such that 11*k+1 is a square.

Original entry on oeis.org

0, 9, 13, 40, 48, 93, 105, 168, 184, 265, 285, 384, 408, 525, 553, 688, 720, 873, 909, 1080, 1120, 1309, 1353, 1560, 1608, 1833, 1885, 2128, 2184, 2445, 2505, 2784, 2848, 3145, 3213, 3528, 3600, 3933, 4009, 4360, 4440, 4809, 4893, 5280, 5368, 5773, 5865
Offset: 1

Views

Author

Bruno Berselli, Nov 16 2012

Keywords

Comments

Equivalently, numbers of the form m*(11*m+2), where m = 0,-1,1,-2,2,-3,3,...
Also, integer values of h*(h+2)/11.

Crossrefs

Cf. numbers k such that h*k+1 is a square: A005563 (h=1), A046092 (h=2), A001082 (h=3), A002378 (h=4), A036666 (h=5), A062717 (h=6), A132354 (h=7), A000217 (h=8), A132355 (h=9), A132356 (h=10), A152749 (h=12), A219389 (h=13), A219390 (h=14), A204221 (h=15), A074378 (h=16), A219394 (h=17), A219395 (h=18), A219396 (h=19), A219190 (h=20), A219391 (h=21), A219392 (h=22), A219393 (h=23), A001318 (h=24), A219259 (h=25), A217441 (h=26), A219258 (h=27), A219191 (h=28).
Cf. A175885 (square roots of 11*a(n)+1).

Programs

  • Magma
    [n: n in [0..7000] | IsSquare(11*n+1)];
    
  • Magma
    I:=[0,9,13,40,48]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    Select[Range[0, 7000], IntegerQ[Sqrt[11 # + 1]] &]
    CoefficientList[Series[x (9 + 4 x + 9 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)

Formula

G.f.: x^2*(9+4*x+9*x^2)/((1+x)^2*(1-x)^3).
a(n) = a(-n+1) = (22*n*(n-1)+7*(-1)^n*(2*n-1)-1)/8 + 1 = (1/176)*(22*n+7*(-1)^n-15)*(22*n+7*(-1)^n-7).
Sum_{n>=2} 1/a(n) = 11/4 - cot(2*Pi/11)*Pi/2. - Amiram Eldar, Mar 15 2022

A132356 a(2*k) = k*(10*k+2), a(2*k+1) = 10*k^2 + 18*k + 8, with k >= 0.

Original entry on oeis.org

0, 8, 12, 36, 44, 84, 96, 152, 168, 240, 260, 348, 372, 476, 504, 624, 656, 792, 828, 980, 1020, 1188, 1232, 1416, 1464, 1664, 1716, 1932, 1988, 2220, 2280, 2528, 2592, 2856, 2924, 3204, 3276, 3572, 3648, 3960, 4040, 4368, 4452, 4796, 4884, 5244, 5336, 5712
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 10*X^3 + X^2 = Y^2.
Polygonal number connection: 2*H_n + 6S_n, where H_n is the n-th hexagonal number and S_n is the n-th square number. This is the base formula that is expanded upon to achieve the full series. See contributing formula below. - William A. Tedeschi, Sep 12 2010
Equivalently, numbers of the form 2*h*(5*h+1), where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 02 2017

Crossrefs

Cf. numbers m such that k*m+1 is a square: A005563 (k=1), A046092 (k=2), A001082 (k=3), A002378 (k=4), A036666 (k=5), A062717 (k=6), A132354 (k=7), A000217 (k=8), A132355 (k=9), A219257 (k=11), A152749 (k=12), A219389 (k=13), A219390 (k=14), A204221 (k=15), A074378 (k=16), A219394 (k=17), A219395 (k=18), A219396 (k=19), A219190 (k=20), A219391 (k=21), A219392 (k=22), A219393 (k=23), A001318 (k=24), A219259 (k=25), A217441 (k=26), A219258 (k=27), A219191 (k=28).
Cf. A220082 (numbers k such that 10*k-1 is a square).

Programs

  • Mathematica
    CoefficientList[Series[4*x*(2*x^2 + x + 2)/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 12 2017 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,8,12,36,44},50] (* Harvey P. Dale, Dec 15 2023 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2))) \\ G. C. Greubel, Jun 12 2017
    
  • PARI
    a(n) = n^2 + n + 6*((n+1)\2)^2 \\ Charles R Greathouse IV, Sep 11 2022

Formula

G.f.: 4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2). - R. J. Mathar, Apr 07 2008
a(n) = 10*x^2 - 2*x, where x = floor(n/2)*(-1)^n for n >= 1. - William A. Tedeschi, Sep 12 2010
a(n) = ((2*n+1-(-1)^n)*(10*(2*n+1)-2*(-1)^n))/16. - Luce ETIENNE, Sep 13 2014
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4. - Chai Wah Wu, May 24 2016
Sum_{n>=1} 1/a(n) = 5/2 - sqrt(1+2/sqrt(5))*Pi/2. - Amiram Eldar, Mar 15 2022
a(n) = n^2 + n + 6*ceiling(n/2)^2. - Ridouane Oudra, Aug 06 2022

Extensions

More terms from Max Alekseyev, Nov 13 2009

A219190 Numbers of the form k*(5*k+1), where k = 0,-1,1,-2,2,-3,3,...

Original entry on oeis.org

0, 4, 6, 18, 22, 42, 48, 76, 84, 120, 130, 174, 186, 238, 252, 312, 328, 396, 414, 490, 510, 594, 616, 708, 732, 832, 858, 966, 994, 1110, 1140, 1264, 1296, 1428, 1462, 1602, 1638, 1786, 1824, 1980, 2020, 2184, 2226, 2398, 2442, 2622, 2668, 2856, 2904, 3100
Offset: 1

Views

Author

Bruno Berselli, Nov 14 2012

Keywords

Comments

Equivalently, numbers m such that 20*m+1 is a square.
Also, integer values of h*(h+1)/5.
More generally, for the numbers of the form n*(k*n+1) with n in A001057, we have:
. generating function (offset 1): x^2*(k-1+2*x+(k-1)*x^2)/((1+x)^2*(1-x)^3);
. n-th term: b(n) = (2*k*n*(n-1)+(k-2)*(-1)^n*(2*n-1)+k-2)/8;
. first differences: (n-1)*((-1)^n*(k-2)+k)/2;
. b(2n+1)-b(2n) = 2*n (independent from k);
. (4*k)*b(n)+1 = (2*k*n+(k-2)*(-1)^n-k)^2/4.

Crossrefs

Subsequence of A011858.
Cf. A090771: square roots of 20*a(n)+1 (see the first comment).
Cf. numbers of the form n*(k*n+1) with n in A001057: k=0, A001057; k=1, A110660; k=2, A000217; k=3, A152749; k=4, A074378; k=5, this sequence; k=6, A036498; k=7, A219191; k=8, A154260.
Cf. similar sequences listed in A219257.

Programs

  • Magma
    k:=5; f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..25]];
    
  • Magma
    I:=[0,4,6,18,22]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    Rest[Flatten[{# (5 # - 1), # (5 # + 1)} & /@ Range[0, 25]]]
    CoefficientList[Series[2 x (2 + x + 2 x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,4,6,18,22},50] (* Harvey P. Dale, Jan 21 2015 *)

Formula

G.f.: 2*x^2*(2 + x + 2*x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (10*n*(n-1) + 3*(-1)^n*(2*n - 1) + 3)/8.
a(n) = 2*A057569(n) = A008851(n+1)*A047208(n)/5.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Harvey P. Dale, Jan 21 2015
Sum_{n>=2} 1/a(n) = 5 - sqrt(1+2/sqrt(5))*Pi. - Amiram Eldar, Mar 15 2022
a(n) = A132356(n-1)/2, n >= 1. - Bernard Schott, Mar 15 2022

A219390 Numbers k such that 14*k+1 is a square.

Original entry on oeis.org

0, 12, 16, 52, 60, 120, 132, 216, 232, 340, 360, 492, 516, 672, 700, 880, 912, 1116, 1152, 1380, 1420, 1672, 1716, 1992, 2040, 2340, 2392, 2716, 2772, 3120, 3180, 3552, 3616, 4012, 4080, 4500, 4572, 5016, 5092, 5560, 5640, 6132, 6216, 6732, 6820
Offset: 1

Views

Author

Bruno Berselli, Nov 19 2012

Keywords

Comments

Equivalently, numbers of the form m*(14*m+2), where m = 0,-1,1,-2,2,-3,3,...
Also, integer values of 2*h*(h+1)/7.

Crossrefs

Cf. similar sequences listed in A219257.
Cf. A113801 (square roots of 14*a(n)+1).

Programs

  • Magma
    [n: n in [0..7000] | IsSquare(14*n+1)];
    
  • Magma
    I:=[0,12,16,52,60]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Maple
    A219390:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(14*n+1), integer) then print(n);
    fi; od; end:
    A219390(1000); # Paolo P. Lava, Feb 19 2013
  • Mathematica
    Select[Range[0, 7000], IntegerQ[Sqrt[14 # + 1]] &]
    CoefficientList[Series[4 x (3 + x + 3 x^2) ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,12,16,52,60},50] (* Harvey P. Dale, Feb 05 2019 *)

Formula

G.f.: 4*x^2*(3+x+3*x^2)/((1+x)^2*(1-x)^3).
a(n) = a(-n+1) = (14*n*(n-1)+5*(-1)^n*(2*n-1)+1)/4 +1.
a(n) = 2*A219191(n).
Sum_{n>=2} 1/a(n) = 7/2 - cot(Pi/7)*Pi/2. - Amiram Eldar, Mar 15 2022

A092277 a(n) = 7*n^2 + n.

Original entry on oeis.org

0, 8, 30, 66, 116, 180, 258, 350, 456, 576, 710, 858, 1020, 1196, 1386, 1590, 1808, 2040, 2286, 2546, 2820, 3108, 3410, 3726, 4056, 4400, 4758, 5130, 5516, 5916, 6330, 6758, 7200, 7656, 8126, 8610, 9108, 9620, 10146, 10686, 11240, 11808, 12390, 12986, 13596
Offset: 0

Views

Author

Evgeniy A. Chukhlomin (dkea(AT)yandex.ru), Feb 18 2004

Keywords

Comments

First bisection of A219191. - Bruno Berselli, Nov 15 2012

Examples

			From _Bruno Berselli_, Oct 27 2017: (Start)
After 0:
8   =       -(1) + (2+3+4).
30  =     -(1+2) + (3+4+5+6+7+8).
66  =   -(1+2+3) + (4+5+6+7+8+9+10+11+12).
116 = -(1+2+3+4) + (5+6+7+8+9+10+11+12+13+14+15+16). (End)
		

Crossrefs

Cf. A000290, A033582. - Omar E. Pol, Dec 22 2008

Programs

Formula

a(n) = 7*A000290(n) + n = A033582(n) + n. - Omar E. Pol, Dec 22 2008
a(n) = a(n-1) + 14*n - 6 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 17 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 2*x*(4 + 3*x)/(1-x)^3.
E.g.f.: exp(x)*x*(8 + 7*x).
a(n) = 2*A022265(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Showing 1-5 of 5 results.