cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A220509 n^3 + 3n + 3^n.

Original entry on oeis.org

1, 7, 23, 63, 157, 383, 963, 2551, 7097, 20439, 60079, 178511, 533205, 1596559, 4785755, 14352327, 43050865, 129145127, 387426375, 1162268383, 3486792461, 10460362527, 31381070323, 94143191063, 282429550377, 847288625143, 2541865845983, 7625597504751
Offset: 0

Views

Author

Jonathan Vos Post, Dec 15 2012

Keywords

Comments

This is to A220425 as 3 is to 2.
The subsequence of primes begins: 7, 23, 157, 383, 2551, see A220701 for the associated n.

Examples

			a(1) = 1^3 + 3*1 + 3^1 = 7.
a(2) = 2^3 + 3*2 + 3^2 = 23.
		

Crossrefs

Programs

  • Magma
    [n^3 + 3*n + 3^n: n in [0..30]]; // Vincenzo Librandi, Dec 18 2012
  • Mathematica
    Table[n^3 + 3*n + 3^n, {n, 0, 30}] (* T. D. Noe, Dec 17 2012 *)
    CoefficientList[Series[(1 - 8*x^2 + 6*x^3 - 11*x^4)/((1-x)^4*(1-3x)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)
  • Maxima
    A220509(n):=n^3+3*n+3^n$ makelist(A220509(n),n,0,20); /* Martin Ettl, Dec 17 2012 */
    

Formula

a(n) = n^3 + 3*n + 3^n = A000578(n) + A008585(n) + A000244(n).
G.f.: (1 - 8*x^2 + 6*x^3 - 11*x^4)/((1-x)^4*(1-3*x)). - Vincenzo Librandi, Dec 18 2012
Showing 1-1 of 1 results.