A220511
a(n) = n^5 + 5*n + 5^n.
Original entry on oeis.org
1, 11, 67, 383, 1669, 6275, 23431, 94967, 423433, 2012219, 9865675, 48989231, 244389517, 1221074483, 6104053519, 30518337575, 152588939281, 762940873067, 3814699155283, 19073488804319, 95367434840725, 476837162287331, 2384185796169367, 11920928961514583
Offset: 0
a(1) = 1^5 + 5*1 + 5^1 = 11.
a(2) = 2^5 + 5*2 + 5^2 = 67.
-
Table[n^5 + 5*n + 5^n, {n, 0, 30}] (* T. D. Noe, Dec 17 2012 *)
LinearRecurrence[{11,-45,95,-115,81,-31,5},{1,11,67,383,1669,6275,23431},30] (* Harvey P. Dale, Jun 03 2024 *)
-
makelist(n^5 + 5*n + 5^n,n,0,20); /* Martin Ettl, Jan 15 2013 */
-
a(n)=n^5+5*n+5^n \\ Charles R Greathouse IV, Oct 07 2015
A220528
a(n) = n^7 + 7*n + 7^n.
Original entry on oeis.org
1, 15, 191, 2551, 18813, 94967, 397627, 1647135, 7862009, 45136639, 292475319, 1996813991, 13877119093, 96951759015, 678328486451, 4747732369423, 33233199005169, 232630924325999, 1628414210130607, 11398896079245015, 79792267577612141, 558545865884372695
Offset: 0
a(1) = 1^7 + 7*1 + 7^1 = 15.
a(2) = 2^7 + 7*2 + 7^2 = 191.
-
Table[n^7 + 7*n + 7^n, {n, 0, 30}] (* T. D. Noe, Dec 17 2012 *)
-
makelist(n^7 + 7*n + 7^n,n,0,20); /* Martin Ettl, Jan 15 2013 */
A220653
a(n) = n^11 + 11*n + 11^n.
Original entry on oeis.org
1, 23, 2191, 178511, 4208989, 48989231, 364568683, 1996813991, 8804293561, 33739007399, 125937424711, 570623341343, 3881436747541, 36314872538111, 383799398753059, 4185897925275191, 45967322049616753, 505481300395601591, 5559981581902310911, 61159206938673444719
Offset: 0
a(1) = 1^11 + 11*1 + 11^1 = 23.
A182127
Main diagonal T(n,n) of array T(k,n) = n-th value of m^prime(k) + m*prime(k) + prime(k)^m.
Original entry on oeis.org
1, 7, 67, 2551, 4208989, 1221074483, 16926683582407, 11398896079245015, 590295810437016637177, 4710128697246259342067579819, 10000000000000000819628286981111, 340039485861577398992584799927541447791, 176372588156290374069930689165295413889886285
Offset: 1
The upper left corner of the matrix is:
.
k\n | 1 2 3 4 5 6
----+---------------------------------------
1 | 1 5 12 23 40 67 (A220425)
2 | 1 7 23 63 157 383 (A220509)
3 | 1 11 67 383 1669 6275 (A220511)
4 | 1 15 191 2551 18813 94967 (A220528)
5 | 1 23 2191 178511 4208989 48989231 (A220653)
A209261
a(n) = n^13 + 13*n + 13^n.
Original entry on oeis.org
1, 27, 8387, 1596559, 67137477, 1221074483, 13065520903, 96951759015, 550571544713, 2552470327819, 10137858491979, 36314872538111, 130291290501709, 605750213184675, 4731091158953615, 53132088082450327, 669920208810550545
Offset: 0
a(2) = 2^13 + 13*2 + 13^2 = 8387.
-
[n^13 + 13*n + 13^n: n in [0..30]]; // G. C. Greubel, Jan 05 2018
-
Table[n^13 + 13*n + 13^n, {n,0,30}] (* G. C. Greubel, Jan 05 2018 *)
-
makelist(n^13 + 13*n + 13^n,n,0,20); /* Martin Ettl, Jan 15 2013 */
-
for(n=0,30, print1(n^13 + 13*n + 13^n, ", ")) \\ G. C. Greubel, Jan 05 2018
A220701
Numbers k such that k^3 + 3*k + 3^k is prime.
Original entry on oeis.org
1, 2, 4, 5, 7, 17, 22, 47, 155, 167, 203, 277, 469, 629, 890, 1427, 4507, 5705, 6095, 9808, 10108, 12797, 16184, 31535, 33575
Offset: 1
-
Select[Range[10000], PrimeQ[#^3 + 3*# + 3^#]&]
-
is(n)=ispseudoprime(n^3+3*n+3^n) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-6 of 6 results.
Comments