cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A209233 A two-digit Look-and-Say sequence starting with 11: each term summarizes the increasing two-digit substrings of the previous term.

Original entry on oeis.org

11, 111, 211, 111121, 311112121, 311212221131, 211212113221222231, 211312113421422123131132, 311212413114421122123331132134242, 411412313114421122123224331132233134141342144, 411312413414321322323124431232233234441242143244
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 13 2013

Keywords

Comments

a(16) is the first term containing a zero; this is due to the fact that a(15) is the first term having exactly 10 occurrences of a two-digit number, namely 10 x 31.

Examples

			a(0) = 11: 1 x 11 --> a(1) = 111;
a(1) = 111: 2 x 11 --> a(2) = 211;
a(2) = 211: 1 x 11 and 1 x 21 --> a(3) = 111121;
a(3) = 111121: 3 x 11, 1 x 12 and 1 x 21 --> a(4) = 311112121.
		

Crossrefs

Cf. A209234 (start=10), A221368 (start=12), A221369 (start=13), A221372 (start=19), A221373 (start=99).

Programs

  • Haskell
    -- See Link.

A209234 A two-digit Look-and-Say sequence starting with 10: each term summarizes the increasing two-digit substrings of the previous term.

Original entry on oeis.org

10, 110, 110111, 101110311, 101103210311131, 101203310311113121231132, 101203210411312213120121123431132133, 201103104210311512413220421122123331232133134141143, 101203204310411412313214115220421222223124431232333134341242143151
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 13 2013

Keywords

Examples

			a(0) = 10: 1x10 --> a(1)=110;
a(1) = 110: 1x10 and 1x11 --> a(2)=110111;
a(2) = 110111: 1x01, 1x10 and 3x11 -> a(3)=101110311;
a(3) = 101110311: 1x01, 1x03, 2x10, 3x11 and 1x31 -> a(4)=101103210311131.
		

Crossrefs

Cf. A209233 (start=11), A221368 (start=12), A221369 (start=13), A221372 (start=19), A221373 (start=99).

Programs

  • Haskell
    -- See Link.

A221368 A two-digit Look-and-Say sequence starting with 12: each term summarizes the increasing two-digit substrings of the previous term.

Original entry on oeis.org

12, 112, 111112, 411112, 311112141, 311112114121131141, 611212113214221231241, 211412113114421122123124131132141142161, 611412313414116621122123124331132341242144161, 411512213314216321122323224331132133234541142143144261162166
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 13 2013

Keywords

Comments

a(36) is the first term containing a zero; this is due to the fact that a(35) is the first term having exactly 10 occurrences of a two-digit number, namely 10 x 42.

Examples

			a(0) = 12: 1 x 12 --> a(1) = 112;
a(1) = 112: 1 x 11 ana 1 x 12 --> a(2) = 111112;
a(2) = 111112: 4 x 11 and 1 x 12 --> a(4) = 411112;
a(3) = 411112: 3 x 11, 1 x 12 and 1 x 41 --> a(4) = 311112141.
		

Crossrefs

Cf. A209234 (start=10), A209233 (start=11), A221369 (start=13), A221372 (start=19), A221373 (start=99).

Programs

  • Haskell
    -- See Link.

A221372 A two-digit Look-and-Say sequence starting with 19: each term summarizes the increasing two-digit substrings of the previous term.

Original entry on oeis.org

19, 119, 111119, 411119, 311119141, 311114119131141191, 611113214219231241291, 311212113114119221123124129131132141142161191192, 911512313314116319521122123124129431132341142161291292
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 13 2013

Keywords

Comments

a(16) is the first term containing a zero; this is due to the fact that a(15) is the first term having exactly 10 occurrences of a two-digit number, namely 10 x 51.

Examples

			a(0) = 19: 1 x 19 --> a(1) = 119;
a(1) = 119: 1 x 11 and 1 x 19 --> a(2) = 111119;
a(2) = 111119: 4 x 11 and 1 x 19 --> a(3) = 411119;
a(3) = 411119: 3 x 11, 1 x 19 and 1 x 41 --> a(4) = 311119141.
		

Crossrefs

Cf. A209234 (start=10), A209233 (start=11), A221368 (start=12), A221369 (start=13), A221373 (start=99).

Programs

  • Haskell
    -- See Link.

A221373 A two-digit Look-and-Say sequence starting with 99: each term summarizes the increasing two-digit substrings of the previous term.

Original entry on oeis.org

99, 199, 119199, 111219191199, 311112319121291199, 411312219121123129231291199, 311512113219221122223229331141291192199, 511312113114115319421522123229231232133141151191292193199, 611412313214315419521222323229631232133241142251152153191292193194199
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 13 2013

Keywords

Comments

a(22) is the first term containing a zero; this is due to the fact that a(21) is the first term having exactly 10 occurrences of a two-digit number, namely 10 x 32.

Examples

			a(0) = 11: 1x99 --> a(1)=199;
a(1) = 199: 1x19 and 1x99 --> a(2)=119199;
a(2) = 119199: 1x11, 2x19, 1x91 and 1x99 --> a(3)=111219191199;
a(3) = 111219191199: 3x11, 1x12, 3x19, 1x21, 2x91 and 1x99 --> a(4)=311112319121291199.
		

Crossrefs

Cf. A209234 (start=10), A209233 (start=11), A221368 (start=12), A221369 (start=13), A221372 (start=19).

Programs

  • Haskell
    -- See Link.

A221364 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = 1/2*(3 - sqrt(5)).

Original entry on oeis.org

1, 1, 1, 5, 1, 16, 1, 45, 1, 121, 1, 320, 1, 841, 1, 2205, 1, 5776, 1, 15125, 1, 39601, 1, 103680, 1, 271441, 1, 710645, 1, 1860496, 1, 4870845, 1, 12752041, 1, 33385280, 1, 87403801, 1, 228826125, 1, 599074576, 1, 1568397605, 1, 4106118241, 1, 10749957120, 1, 28143753121
Offset: 0

Views

Author

Peter Bala, Jan 15 2013

Keywords

Comments

The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 3. See also A221365 (N = 5), A221366 (N = 7), A221369 (N = 9).
If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(3 - sqrt(5)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. Examples are given below.

Examples

			F(1/2*(3 - sqrt(5))) = 1.53879 34992 88095 08323 ... = 1 + 1/(1 + 1/(1 + 1/(5 + 1/(1 + 1/(16 + 1/(1 + 1/(45 + ...))))))).
F((1/2*(3 - sqrt(5)))^2) = 1.16725 98258 10214 95210 ... = 1 + 1/(5 + 1/(1 + 1/(45 + 1/(1 + 1/(320 + 1/(1 + 1/(2205 + ...))))))).
F((1/2*(3 - sqrt(5)))^3) = 1.05883 42773 67371 19975 ... = 1 + 1/(16 + 1/(1 + 1/(320 + 1/(1 + 1/(5776 + 1/(1 + 1/(103680 + ...))))))).
		

Crossrefs

Cf. A001906, A002878, A004146, A049684, A081070, A081071, A174500 (N = 4), A221365 (N = 5), A221366 (N = 7), A221369 (N = 9).

Formula

a(2*n-1) = (1/2*(3 + sqrt(5)))^n + (1/2*(3 - sqrt(5)))^n - 2 = A004146(n); a(2*n) = 1.
a(4*n+1) = A081071(n) = A002878(n)^2;
a(4*n-1) = A081070(n) = 5*A049684(n) = 5*(A001906(n))^2.
a(n) = 4*a(n-2)-4*a(n-4)+a(n-6). G.f.: -(x^4+x^3-3*x^2+x+1) / ((x-1)*(x+1)*(x^2-x-1)*(x^2+x-1)). - Colin Barker, Jan 20 2013

Extensions

More terms from Michel Marcus, Feb 21 2025

A221365 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = 1/2*(5 - sqrt(21)).

Original entry on oeis.org

1, 3, 1, 21, 1, 108, 1, 525, 1, 2523, 1, 12096, 1, 57963, 1, 277725, 1, 1330668, 1, 6375621, 1, 30547443, 1, 146361600, 1, 701260563, 1, 3359941221, 1, 16098445548, 1, 77132286525, 1, 369562987083, 1, 1770682648896, 1
Offset: 0

Views

Author

Peter Bala, Jan 15 2013

Keywords

Comments

The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 5. See also A221364 (N = 3), A221366 (N = 7) and A221367 (N = 9).
If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(5 - sqrt(21)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...].

Examples

			F(1/2*(5 - sqrt(21))) = 1.25274 83510 08359 27965 ... = 1 + 1/(3 + 1/(1 + 1/(21 + 1/(1 + 1/(108 + 1/(1 + 1/(525 + ...))))))).
F((1/2*(5 - sqrt(21)))^2) = 1.04545 84663 16495 30047 ... = 1 + 1/(21 + 1/(1 + 1/(525 + 1/(1 + 1/(12096 + 1/(1 + 1/(277725 + ...))))))).
F((1/2*(5 - sqrt(21)))^3) = 1.00917 43188 83793 73068 ... = 1 + 1/(108 + 1/(1 + 1/(12096 + 1/(1 + 1/(1330668 + 1/(1 + 1/(146361600 + ...))))))).
		

Crossrefs

Cf. A004254, A030221, A054493, A174500 (N = 4), A221364 (N = 3), A221366 (N = 7), A221369 (N = 9).

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-6,0,1},{1,3,1,21,1,108},40] (* Harvey P. Dale, Jun 06 2023 *)

Formula

a(2*n-1) = (1/2*(5 + sqrt(21)))^n + (1/2*(5 - sqrt(21)))^n - 2 = 3*A054493(n); a(2*n) = 1.
a(4*n+1) = 3*(A030221(n))^2; a(4*n-1) = 21*(A004254(n))^2.
a(n) = 6*a(n-2)-6*a(n-4)+a(n-6). G.f.: -(x^4+3*x^3-5*x^2+3*x+1) / ((x-1)*(x+1)*(x^4-5*x^2+1)). - Colin Barker, Jan 20 2013

A221366 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = (1/2)*(7 - 3*sqrt(5)).

Original entry on oeis.org

1, 5, 1, 45, 1, 320, 1, 2205, 1, 15125, 1, 103680, 1, 710645, 1, 4870845, 1, 33385280, 1, 228826125, 1, 1568397605, 1, 10749957120, 1, 73681302245, 1, 505019158605, 1, 3461452808000, 1, 23725150497405, 1
Offset: 0

Views

Author

Peter Bala, Jan 15 2013

Keywords

Comments

The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 7. See also A221364 (N = 3), A221365 (N = 5) and A221367 (N = 9).
If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(7 - sqrt(45)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. Examples are given below.

Examples

			F(1/2*(7 - sqrt(45))) = 1.16725 98258 10214 95210 ... = 1 + 1/(5 + 1/(1 + 1/(45 + 1/(1 + 1/(320 + 1/(1 + 1/(2205 + ...))))))).
F((1/2*(7 - sqrt(45)))^2) = 1.02173 93445 69104 86504 ... = 1 + 1/(45 + 1/(1 + 1/(2205 + 1/(1 + 1/(103680 + 1/(1 + 1/(4870845 + ...))))))).
F((1/2*(7 - sqrt(45)))^3) = 1.00311 52648 91110 10148 ... = 1 + 1/(320 + 1/(1 + 1/(103680 + 1/(1 + 1/(33385280 + 1/(1 + 1/(10749957120 + ...))))))).
		

Crossrefs

Cf. A174500 (N = 4), A221364 (N = 3), A221365 (N = 5), A221369 (N = 9).

Programs

  • Mathematica
    LinearRecurrence[{0,8,0,-8,0,1},{1,5,1,45,1,320},40] (* or *) Riffle[ LinearRecurrence[{8,-8,1},{5,45,320},20],1,{1,-1,2}] (* Harvey P. Dale, Jan 04 2018 *)

Formula

a(2*n-1) = (1/2*(7 + sqrt(45)))^n + (1/2*(7 - sqrt(45)))^n - 2 = A081070(n); a(2*n) = 1.
a(4*n-1) = 45*A049682(n) = 45*(A004187(n))^2;
a(4*n+1) = 5*(A033890(n))^2.
a(n) = 8*a(n-2)-8*a(n-4)+a(n-6). G.f.: -(x^4+5*x^3-7*x^2+5*x+1) / ((x-1)*(x+1)*(x^2-3*x+1)*(x^2+3*x+1)). - Colin Barker, Jan 20 2013
Showing 1-8 of 8 results.