cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A221792 Number of n-digit cuban primes.

Original entry on oeis.org

1, 3, 7, 17, 36, 109, 265, 762, 2125, 5964, 17205, 49989, 145047, 424155, 1250298, 3697457, 10985390, 32768938, 98054446, 294239322, 885300000, 2669959359, 8069333311, 24435519147
Offset: 1

Views

Author

Vladimir Pletser, Jan 25 2013

Keywords

Crossrefs

Formula

a(n) = A113478(n) - A113478(n-1). - Jens Kruse Andersen, Jul 14 2014

Extensions

a(19)-a(24) added from A113478 by Andrew Howroyd, Jan 14 2020

A221848 Partial sums of primes equal (x+1)^5 - x^5.

Original entry on oeis.org

31, 242, 4893, 65944, 437225, 1161126, 2964127, 5825588, 10154739, 15080020, 22166471, 30110772, 44945803, 64557704, 87939735, 132059086, 186723797, 273272598, 371065129, 533543630, 723425661, 990642712, 1283752673, 1590492954, 2080592455
Offset: 1

Views

Author

Vladimir Pletser, Jan 26 2013

Keywords

Comments

Partial sums of primes equal to the difference of two consecutive fifth powers (x+1)^5 - x^5 = 5x(x+1)(x^2+x+1)+1 (A121616). Values of x = A121617. Number of primes equal (x+1)^5 - x^5 < 10^(n) in A221846. Partial sums of number of primes of the form (x+1)^5 - x^5 have similar characteristics to similar sequences for natural primes (A007504) and cuban primes (A221793).

Programs

  • Mathematica
    Accumulate[Select[#[[2]]-#[[1]]&/@Partition[Range[100]^5,2,1],PrimeQ]] (* Harvey P. Dale, Mar 29 2013 *)

Extensions

More terms from Harvey P. Dale, Mar 29 2013

A221979 Partial sums of primes of the form (n+1)^7 - n^7.

Original entry on oeis.org

127, 14324, 557931, 1831540, 4517357, 9734388, 26079025, 167982242, 2096276793, 10354981402, 24379848623, 47195272710, 78109546591, 169264277168, 285424955019, 468934979410, 749602296677, 1302535107108, 2819580695167, 4457920826414
Offset: 1

Views

Author

Vladimir Pletser, Feb 02 2013

Keywords

Comments

Partial sums of primes equal to the difference of two consecutive seventh powers (x+1)^7 - x^7 = 7x(x+1)(x^2+x+1)^2+1 (A121618). Values of x = A121619 - 1. Number of primes equal (x+1)^7 - x^7 < 10^(n) in A221977. Partial sums of number of primes of the form (x+1)^7 - x^7 have similar characteristics to similar sequences for natural primes (A007504), cuban primes (A221793) and primes of the form (x+1)^5 - x^5 (A221848).

Programs

  • Mathematica
    Accumulate[Select[Differences[Range[80]^7],PrimeQ]] (* Harvey P. Dale, Jul 09 2024 *)

A221985 Partial sums of primes of the form (n+1)^11 - n^11.

Original entry on oeis.org

313968931, 6926576780, 75545517171, 2332950292798, 26362646685307289, 157261278401555730, 11893629184686938707, 40838913299508512438, 270600054840430038249, 203248659302772610786786, 431646786892325713723157, 907860322879288498305774, 2535699587078276763578623
Offset: 1

Views

Author

Vladimir Pletser, Feb 02 2013

Keywords

Comments

Partial sums of primes equal to the difference of two consecutive eleventh powers (x+1)^11 - x^11 = 11x(x+1)(x^2+x+1)[ x(x+1)(x^2+x+1)(x^2+x+3)+1] +1 (A189055). Values of x = A211184. Number of primes equal (x+1)^11 - x^11 < 10^(n) in A221983. Partial sums of number of primes of the form (x+1)^11 - x^11 have similar characteristics to similar sequences for natural primes (A007504), cuban primes (A221793) and primes of the form (x+1)^p - x^p for p = 5 (A221848) and p = 7 (A221979).

Programs

  • Mathematica
    Accumulate[Select[Differences[Range[300]^11],PrimeQ]] (* Harvey P. Dale, Mar 24 2023 *)

A268861 Cubefree numbers n such that n + 1 is a perfect cube.

Original entry on oeis.org

7, 26, 63, 124, 215, 342, 511, 1330, 1727, 2196, 2743, 3374, 4095, 7999, 9260, 10647, 12166, 13823, 17575, 19682, 24388, 26999, 29790, 32767, 39303, 42874, 46655, 54871, 59318, 63999, 74087, 79506, 85183, 91124, 103822, 110591, 124999, 132650, 140607, 148876
Offset: 1

Views

Author

K. D. Bajpai, Feb 14 2016

Keywords

Comments

Intersection of A004709 and A068601. - Michel Marcus, Feb 15 2016

Examples

			a(2) = 26 = 2 * 13 that is cubefree. 26 + 1 = 27 = 3^3 (perfect cube).
a(4) = 124 = 2 * 2 * 31 that is cubefree. 124 + 1 = 125 = 5^3 (perfect cube).
		

Crossrefs

Programs

  • Maple
    cubefree:= proc(n) local t;
      max(seq(t[2],t=ifactors(n)[2])) <= 2
    end proc:
    select(cubefree, [seq(i^3-1,i=2..100)]); # Robert Israel, Mar 03 2016
  • Mathematica
    Select[Range[150000], FreeQ[FactorInteger[#], {, k /; k > 2}] && IntegerQ[CubeRoot[# + 1]] &]
    Select[Range[2,70]^3,Max[FactorInteger[#-1][[All,2]]]<3&]-1 (* Harvey P. Dale, Oct 11 2021 *)
  • PARI
    for(n=1, 1e5, f = factor(n)[, 2]; if((#f == 0) || vecmax(f) < 3, if(ispower(n + 1, 3), print1(n, ", "))));
Showing 1-5 of 5 results.