A221874
Numbers m such that 10*m^2 + 6 is a square.
Original entry on oeis.org
1, 5, 43, 191, 1633, 7253, 62011, 275423, 2354785, 10458821, 89419819, 397159775, 3395598337, 15081612629, 128943316987, 572704120127, 4896450447169, 21747674952197, 185936173675435, 825838944063359, 7060678149219361, 31360132199455445
Offset: 1
-
m:=22; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)*(1+4*x+x^2)/((1-6*x-x^2)*(1+6*x-x^2))));
-
A221874:=proc(q)
local n;
for n from 1 to q do if type(sqrt(10*n^2+6),integer) then print(n);
fi; od; end:
A221874(100000000000000000); # Paolo P. Lava, Feb 11 2013
-
LinearRecurrence[{0, 38, 0, -1}, {1, 5, 43, 191}, 22]
-
makelist(expand(((-5*(-1)^n+2*sqrt(10))*(3+sqrt(10))^(2*floor(n/2))-(5*(-1)^n+2*sqrt(10))*(3-sqrt(10))^(2*floor(n/2)))/10), n, 1, 22);
A222390
Nonnegative integers m such that 10*m*(m+1)+1 is a square.
Original entry on oeis.org
0, 3, 15, 132, 588, 5031, 22347, 191064, 848616, 7255419, 32225079, 275514876, 1223704404, 10462309887, 46468542291, 397292260848, 1764580902672, 15086643602355, 67007605759263, 572895164628660, 2544524437949340, 21754929612286743, 96624921036315675
Offset: 1
Cf. nonnegative integers m such that k*m*(m+1)+1 is a square:
A001652 (k=2),
A001921 (k=3),
A001477 (k=4),
A053606 (k=5),
A105038 (k=6),
A105040 (k=7),
A053141 (k=8), this sequence (k=10),
A105838 (k=11),
A061278 (k=12),
A104240 (k=13);
A105063 (k=17),
A222393 (k=18),
A101180 (k=19),
A077259 (k=20) [incomplete list].
-
m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(3*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2))));
-
I:=[0,3,15,132,588]; [n le 5 select I[n] else Self(n-1) +38*Self(n-2)-38*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
-
LinearRecurrence[{1, 38, -38, -1, 1}, {0, 3, 15, 132, 588}, 23]
CoefficientList[Series[3 x (1 + 4 x + x^2)/((1 - x) (1 - 6 x - x^2) (1 + 6 x - x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist(expand(-1/2+((5+(-1)^n*sqrt(10))*(3-sqrt(10))^(2*floor(n/2))+(5-(-1)^n*sqrt(10))*(3+sqrt(10))^(2*floor(n/2)))/20), n, 1, 23);
-
x='x+O('x^30); concat([0], Vec(3*x*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2)))) \\ G. C. Greubel, Jul 15 2018
A281647
Solutions x to the negative Pell equation x^2 - 10*y^2 = -6 with x > y > 0.
Original entry on oeis.org
2, 22, 98, 838, 3722, 31822, 141338, 1208398, 5367122, 45887302, 203809298, 1742509078, 7739386202, 66169457662, 293892866378, 2512696882078, 11160189536162, 95416312061302, 423793309507778, 3623307161447398, 16092985571759402, 137590255822939822
Offset: 1
22 is in the sequence because (x, y) = (22, 7) is a solution to x^2 - 10*y^2 = -6.
-
CoefficientList[ Series[(2 (1 + 11x + 11x^2 + x^3))/(1 - 38x^2 + x^4), {x, 0, 21}], x] (* or *)
LinearRecurrence[{0, 38, 0, -1}, {2, 22, 98, 838}, 22] (* Robert G. Wilson v, Jan 26 2017 *)
-
Vec(2*x*(1 + x)*(1 + 10*x + x^2) / ((1 + 6*x - x^2)*(1 - 6*x - x^2)) + O(x^30))
Showing 1-3 of 3 results.
Comments