A222068 Decimal expansion of (1/16)*Pi^2.
6, 1, 6, 8, 5, 0, 2, 7, 5, 0, 6, 8, 0, 8, 4, 9, 1, 3, 6, 7, 7, 1, 5, 5, 6, 8, 7, 4, 9, 2, 2, 5, 9, 4, 4, 5, 9, 5, 7, 1, 0, 6, 2, 1, 2, 9, 5, 2, 5, 4, 9, 4, 1, 4, 1, 5, 0, 8, 3, 4, 3, 3, 6, 0, 1, 3, 7, 5, 2, 8, 0, 1, 4, 0, 1, 2, 0, 0, 3, 2, 7, 6, 8, 7, 6, 1, 0, 8, 3, 7, 7, 3, 2, 4, 0, 9, 5, 1, 4, 4, 8, 9, 0, 0
Offset: 0
Examples
0.6168502750680849136771556874922594459571...
References
- S. D. Chowla, Solution and Remarks on Question 770, J. Indian Math. Soc. 17 (1927-28), 166-171.
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 507.
- S. Ramanujan, Coll. Papers, Chelsea, 1962, Question 770, page 333.
- G. N. Watson, Solution to Question 770, J. Indian Math. Soc. 18 (1929-30), 294-298.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- B. C. Berndt, Y. S. Choi and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q770, JIMS VIII).
- J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
- Mathematics StackExchange, Sum_k (-1)^k tau(2k+1)/(2k+1).
- G. Nebe and N. J. A. Sloane, Home page for D_4 lattice.
- N. J. A. Sloane and Andrey Zabolotskiy, Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural).
- N. J. Wildberger, Divine Proportions: Rational Trigonometry to Universal Geometry, Wild Egg Books, Sydney 2005.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Magma
pi:=Pi(RealField(110)); Reverse(Intseq(Floor((1/16)*10^100*pi^2))); // Vincenzo Librandi, Feb 20 2017
-
Mathematica
RealDigits[N[Gamma[3/2]^4, 104]] (* Fred Daniel Kline, Feb 19 2017 *) RealDigits[N[Pi^2/16, 100]][[1]] (* Vincenzo Librandi, Feb 20 2017 *) Integrate[Boole[(x+y+z)^2-2(x^2+y^2+z^2)>4x y z],{x,0,1},{y,0,1},{z,0,1}] (* Patrick D McLean, Dec 03 2020 *)
-
PARI
(Pi/4)^2 \\ Charles R Greathouse IV, Oct 31 2014
Formula
Equals A003881^2. - Bruno Berselli, Feb 11 2013
Equals A123092+1/2. - R. J. Mathar, Feb 15 2013
Equals Integral_{x>0} x^2*log(x)/((1+x)^2*(1+x^2)) dx. - Jean-François Alcover, Apr 29 2013
Equals the Bessel moment integral_{x>0} x*I_0(x)*K_0(x)^3. - Jean-François Alcover, Jun 05 2016
Equals Sum_{k>=1} zeta(2*k)*k/4^k. - Amiram Eldar, May 29 2021
Comments