cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A266201 Goodstein numbers: a(n) = G_n(n), where G is the Goodstein function.

Original entry on oeis.org

0, 0, 1, 2, 83, 1197, 187243, 37665879, 20000000211, 855935016215, 44580503598539, 2120126221988686, 155568095557812625, 6568408355712901455, 295147905179358418247, 14063084452070776884879
Offset: 0

Views

Author

Natan Arie Consigli, Jan 22 2016

Keywords

Comments

To write an integer n in base-k hereditary representation, write n in ordinary base-k representation, and then do the same recursively for all exponents which are greater than k.
For example, the hereditary representation of 132132 in base-2 is:
132132 = 2^17 + 2^10 + 2^5 + 2^2
= 2^(2^4 + 1) + 2^(2^3 + 2) + 2^(2^2 + 1) + 2^2
= 2^(2^(2^2) + 1) + 2^(2^(2+1) + 2) + 2^(2^2 + 1) + 2^2.
Define B_k(n) to be the function that substitutes k+1 for all the bases of the base-k hereditary representation of n.
E.g., B_2(101) = B_2(2^(2^2 + 2) + 2^(2^2 + 1) + 2^2 + 1) = 3^(3^3 + 3) + 3^(3^3 + 1) + 3^3 + 1 = 228767924549638.
(Sometimes B_k(n) is referred to as n "bumped" from base k.)
The Goodstein function is defined as: G_k(n) = B_{k+1}(G_{k-1}(n)) - 1 with G_0(n) = n, i.e., iteration of bumping the number to the next larger base and subtracting one; see example section for instances.
Goodstein's theorem says that for any nonnegative n, the sequence G_k(n) eventually stabilizes and then decreases by 1 in each step until it reaches 0. (The subsequent values of G_k(n) < 0 are not part of the sequence.)
Named after the English mathematician Reuben Louis Goodstein (1912-1985). - Amiram Eldar, Jun 19 2021

Examples

			Compute a(5) = G_5(5):
G_0(5) = 5;
G_1(5) = B_2(G_0(5))-1 = B_2(2^2+1)-1 = (3^3+1)-1 = 27 = 3^3;
G_2(5) = B_3(G_1(5))-1 = B_3(3^3)-1 = 4^4-1 = 255 = 3*4^3+3*4^2+3*4+3;
G_3(5) = B_4(G_2(5))-1 = B_4(3*4^3+3*4^2+3*4+3)-1 = 467;
G_4(5) = B_5(G_3(5))-1 = B_5(3*5^3+3*5^2+3*5+2)-1 = 775;
G_5(5) = B_6(G_4(5))-1 = B_6(3*6^3+3*6^2+3*6+1)-1 = 1197.
		

Crossrefs

Cf. Goodstein sequences: A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); A215409: G_n(3); A056193: G_n(4); A266204: G_n(5); A266205: G_n(6); A222117: G_n(15); A059933: G_n(16); A211378: G_n(19).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A266202: g_n(n); A266203: a(n) = k such that g_k(n)=0;
Bumping Sequences: A222112: B_2(n);
Other sequences: A222113.

Programs

  • PARI
    (B(n,b)=sum(i=1,#n=digits(n,b),n[i]*(b+1)^if(#nA266201(n)=for(k=1,n,n=B(n,k+1)-1);n \\ M. F. Hasler, Feb 12 2017

Extensions

Edited by M. F. Hasler, Feb 12 2017
Incorrect a(16) deleted (the correct value is ~ 2.77*10^861) by M. F. Hasler, Feb 19 2017

A222117 Goodstein sequence starting with 15.

Original entry on oeis.org

15, 111, 1283, 18752, 326593, 6588344, 150994943, 3524450280, 100077777775, 3138578427934, 106993479003783, 3937376861542204, 155568096352467863, 6568408356994335930, 295147905181357143919, 14063084452070776884879, 708235345355342213988445
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 13 2013

Keywords

Comments

To calculate a(n+1), write a(n) in the hereditary representation base n+2, then bump the base to n+3, then subtract 1;
Compare to A222113: the underlying variants to define Goodstein sequences are equivalent.

Examples

			The first terms are:
a(0) = 2^(2+1) + 2^2 + 2^1 + 2^0 = 15;
a(1) = 3^(3+1) + 3^3 + 3^1 + 3^0 - 1 = 111;
a(2) = 4^(4+1) + 4^4 + 4^1 - 1 = 4^(4+1) + 4^4 + 3*4^0 = 1283;
a(3) = 5^(5+1) + 5^5 + 3*5^0 - 1 = 5^(5+1) + 5^5 + 2*5^0 = 18752;
a(4) = 6^(6+1) + 6^6 + 2*6^0 - 1 = 6^(6+1) + 6^6 + 1 = 326593;
a(5) = 7^(7+1) + 7^7 + 1 - 1 = 6588344;
a(6) = 8^(8+1) + 8^8 - 1 = 150994943.
		

Crossrefs

Cf. A215409 (start=3), A056193 (start=4), A059933 (start=16), A211378 (start=19).

Programs

  • Haskell
    -- See Link
    
  • PARI
    lista(nn) = {print1(a = 15, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); } \\ Michel Marcus, Feb 24 2016

Extensions

Offset changed to 0 by Nicholas Matteo, Aug 21 2019

A265034 Weak Goodstein sequence beginning with 266.

Original entry on oeis.org

266, 6590, 65601, 390750, 1679831, 5765085, 16777579, 43047173, 100000551, 214359541, 429982475, 815731628, 1475790101, 2562891818, 4294968647, 6975758960, 11019962273, 16983564926, 25600002083, 37822861652, 54875876045, 78310988018, 110075317151, 152587893847
Offset: 0

Views

Author

N. J. A. Sloane, Dec 09 2015, following a suggestion from Alexander R. Povolotsky

Keywords

Crossrefs

Extensions

More terms from Chai Wah Wu, Dec 09 2015
Showing 1-3 of 3 results.