cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222132 Decimal expansion of sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... )))).

Original entry on oeis.org

2, 5, 6, 1, 5, 5, 2, 8, 1, 2, 8, 0, 8, 8, 3, 0, 2, 7, 4, 9, 1, 0, 7, 0, 4, 9, 2, 7, 9, 8, 7, 0, 3, 8, 5, 1, 2, 5, 7, 3, 5, 9, 9, 6, 1, 2, 6, 8, 6, 8, 1, 0, 2, 1, 7, 1, 9, 9, 3, 1, 6, 7, 8, 6, 5, 4, 7, 4, 7, 7, 1, 7, 3, 1, 6, 8, 8, 1, 0, 7, 9, 6, 7, 9, 3, 9, 3, 1, 8, 2, 5, 4, 0, 5, 3, 4, 2, 1, 4, 8, 3, 4, 2, 2, 7
Offset: 1

Views

Author

Jaroslav Krizek, Feb 08 2013

Keywords

Comments

Sequence with a(1) = 1 is decimal expansion of sqrt(4 - sqrt(4 - sqrt(4 - sqrt(4 - ... )))) = A222133.
Because 17 == 1 (mod 4), the basis for integers in the real quadratic number field K(sqrt(17)) is <1, omega(17)>, where omega(17) = (1 + sqrt(17))/2. - Wolfdieter Lang, Feb 10 2020
This is the positive root of the polynomial x^2 - x - 4, with negative root -A222133. - Wolfdieter Lang, Dec 10 2022
It is the spectral radius of the diamond graph (see Seeger and Sossa, 2023). - Stefano Spezia, Sep 19 2023
c^n = A006131(n) + A006131(n-1) * d, where c = (1 + sqrt(17))/2 and d = (-1 + sqrt(17))/2. - Gary W. Adamson, Nov 25 2023
c^n = A052923(n) + A006131(n-1) * c. Also for negative n. - Wolfdieter Lang, Nov 27 2023
The effective degree of maximal entropy random walk on the barred-square graph (see Burda et al.). - Stefano Spezia, Feb 07 2025

Examples

			2.561552812808830274910704...
		

Crossrefs

Programs

  • Maple
    Digits:=140:
    evalf((sqrt(17)+1)/2);  # Alois P. Heinz, Sep 19 2023
  • Mathematica
    RealDigits[(1 + Sqrt[17])/2, 10, 130]

Formula

Closed form: (sqrt(17) + 1)/2 = A178255 - 1 = A082486 - 2.
sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... )))) - 1 = sqrt(4 - sqrt(4 - sqrt(4 - sqrt(4 - ... )))). See A222133.