cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A329592 Decimal expansion of sqrt(34 - 2*sqrt(17))/4 = sqrt(9 - A222132)/2.

Original entry on oeis.org

1, 2, 6, 8, 7, 0, 4, 7, 7, 1, 3, 3, 0, 9, 0, 0, 4, 6, 2, 1, 7, 0, 1, 8, 1, 5, 3, 3, 9, 5, 8, 6, 2, 0, 4, 7, 6, 9, 6, 4, 4, 1, 0, 3, 1, 7, 0, 5, 8, 4, 7, 5, 4, 1, 4, 2, 8, 0, 1, 2, 6, 6, 9, 0, 2, 8, 9, 6, 0, 8, 6, 5, 4, 5, 9, 7, 3, 7, 7, 5, 0, 9, 1, 2, 2, 3, 7, 9, 8, 0, 6, 0, 0, 1, 2, 4
Offset: 1

Views

Author

Wolfdieter Lang, Feb 17 2020

Keywords

Comments

See A329591.

Examples

			cm = 1.268704771330900462170181533958620476964410317058475414280126690...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[34 - 2*Sqrt[17]]/4, 10, 100][[1]] (* Amiram Eldar, Feb 17 2020 *)

Formula

cm := sqrt(34 - 2*sqrt(17))/4 = sqrt(9 - w(17))/2, where w(17) = (1 - sqrt(17))/2 = A222132.

A329591 Decimal expansion of sqrt(34 + 2*sqrt(17))/4 = sqrt(8 + A222132)/2.

Original entry on oeis.org

1, 6, 2, 4, 9, 2, 7, 1, 3, 7, 8, 1, 3, 3, 2, 5, 9, 4, 5, 1, 7, 0, 1, 1, 1, 6, 9, 1, 8, 7, 8, 8, 6, 6, 1, 0, 3, 8, 9, 2, 4, 5, 0, 0, 1, 4, 6, 6, 9, 2, 4, 9, 1, 6, 6, 8, 4, 5, 4, 7, 5, 9, 0, 8, 1, 5, 4, 1, 9, 2, 5, 9, 7, 3, 6, 7, 2, 4, 1, 2, 3, 8, 7, 4, 0, 2, 9, 6, 4, 2, 2, 9, 2, 3, 1, 6, 5, 3, 9
Offset: 1

Views

Author

Wolfdieter Lang, Feb 17 2020

Keywords

Comments

The present cp := sqrt(34 + 2*sqrt(17))/4 is used, together with cm := sqrt(34 - 2*sqrt(17))/4 = sqrt(9 - A222132)/2 = A329592, for the roots of the integer polynomial P(4, x) := x^4 + x^3 - 6*x^2 - x + 1 which are x1 = 4 + cp - 2*cp^2, x2 = 4 - cp - 2*cp^2, x3 = 4 + cm - 2*cm^2, and x4 = 4 - cm - 2*cm^2. The approximate values of these zeros are 0.344150732, -2.905703544, 2.049481177, and -0.4879283650, respectively.
In the power basis of cp (denoted by (...)) and cm (denoted by [...]) the roots of P(4, x) are therefore: (4, +1, -2), (4, -1, -2), [4, +1, -2] and [4, -1, -2], respectively.

Examples

			1.62492713781332594517011169187886610389245001466924916684547590815419...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[34 + 2*Sqrt[17]]/4, 10, 100][[1]] (* Amiram Eldar, Feb 17 2020 *)

Formula

cp := sqrt(34 + 2*sqrt(17))/4 = sqrt(8 + w(17))/2, where w(17) = (1 - sqrt(17))/2 = A222132.

A006131 a(n) = a(n-1) + 4*a(n-2), a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 5, 9, 29, 65, 181, 441, 1165, 2929, 7589, 19305, 49661, 126881, 325525, 833049, 2135149, 5467345, 14007941, 35877321, 91909085, 235418369, 603054709, 1544728185, 3956947021, 10135859761, 25963647845, 66507086889, 170361678269
Offset: 0

Views

Author

Keywords

Comments

Length-n words with letters {0,1,2,3,4} where no two consecutive letters are nonzero, see fxtbook link below. - Joerg Arndt, Apr 08 2011
Equals INVERTi transform of A063727: (1, 2, 8, 24, 80, 256, 832, ...). - Gary W. Adamson, Aug 12 2010
a(n) is equal to the permanent of the n X n Hessenberg matrix with 1's along the main diagonal, 2's along the superdiagonal and the subdiagonal, and 0's everywhere else. - John M. Campbell, Jun 09 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 2, 5*a(n-2) equals the number of 5-colored compositions of n with all parts >= 2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
Pisano period lengths: 1, 1, 8, 1, 6, 8, 48, 2, 24, 6,120, 8, 12, 48, 24, 4,136, 24, 18, 6, ... - R. J. Mathar, Aug 10 2012
This is one of only two Lucas-type sequences whose 8th term is a square. The other one is A097705. - Michel Marcus, Dec 07 2012
Numerators of stationary probabilities for the M2/M/1 queue. In this queue, customers arrives in groups of 2. Intensity of arrival = 1. Service rate = 4. There is only one server and an infinite queue. - Igor Kleiner, Nov 02 2018
Number of 4-compositions of n+2 with 1 not allowed as a part; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 17 2020
From M. Eren Kesim, May 13 2021: (Start)
a(n) is equal to the number of n-step walks from a universal vertex to another (itself or the other) on the diamond graph. It is also equal to the number of (n+1)-step walks from vertex A to vertex B on the graph below.
B--C
| /|
|/ |
A--D
(End)
From Wolfdieter Lang, Jan 03 2024: (Start)
This sequence {a(n-1)}, with a(-1) = 0, appears in the formula for powers of phi17 := (1 + sqrt(17))/2 = A222132, the fundamental (integer) algebraic number of Q(sqrt(17)): phi17^n = A052923(n) + a(n-1)*phi17, for n >= 0.
Limit_{n->oo} a(n+1)/a(n) = phi17. (End)

Examples

			G.f. = 1 + x + 5*x^2 + 9*x^3 + 29*x^4 + 65*x^5 + 181*x^6 + 441*x^7 + 1165*x^8 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Dec 26 2019
    
  • Magma
    [ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+4*Self(n-2): n in [1..40] ]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    A006131:=-1/(-1+z+4*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    seq( simplify((2/I)^n*ChebyshevU(n, I/4)), n=0..30); # G. C. Greubel, Dec 26 2019
  • Mathematica
    m = 16; f[n_] = Product[(1 + m*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; Table[FullSimplify[ExpandAll[f[n]]], {n, 0, 15}]; N[%] (* Roger L. Bagula, Nov 21 2008 *)
    a[n_]:=(MatrixPower[{{1,4},{1,0}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{1, 4}, {1, 1}, 29] (* Jean-François Alcover, Sep 25 2017 *)
    Table[2^n*Fibonacci[n+1, 1/2], {n,0,30}] (* G. C. Greubel, Dec 26 2019 *)
  • PARI
    a(n)=([0,1; 4,1]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    vector(31, n, (2/I)^(n-1)*polchebyshev(n-1, 2, I/4) ) \\ G. C. Greubel, Dec 26 2019
    
  • Python
    def A006131_list(n):
        list = [1, 1] + [0] * (n - 2)
        for i in range(2, n):
            list[i] = list[i - 1] + 4 * list[i - 2]
        return list
    print(A006131_list(29)) # M. Eren Kesim, Jul 19 2021
  • Sage
    [lucas_number1(n,1,-4) for n in range(1, 30)] # Zerinvary Lajos, Apr 22 2009
    

Formula

G.f.: 1/(1 - x - 4*x^2).
a(n) = (((1+sqrt(17))/2)^(n+1) - ((1-sqrt(17))/2)^(n+1))/sqrt(17).
a(n+1) = Sum_{k=0..ceiling(n/2)} 4^k*binomial(n-k, k). - Benoit Cloitre, Mar 06 2004
a(n) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)*(1+(-1)^(n-k))*2^(n-k)/2. - Paul Barry, Aug 28 2005
a(n) = A102446(n)/2. - Zerinvary Lajos, Jul 09 2008
a(n) = Sum_{k=0..n} A109466(n,k)*(-4)^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = Product_{k=1..floor((n - 1)/2)} (1 + 16*cos(k*Pi/n)^2). - Roger L. Bagula, Nov 21 2008
Limiting ratio a(n+1)/a(n) is (1 + sqrt(17))/2 = 2.561552812... - Roger L. Bagula, Nov 21 2008
The fraction b(n) = a(n)/2^n satisfies b(n) = 1/2 b(n-1) + b(n-2); g.f. 1/(1-x/2-x^2); b(n) = (( (1+sqrt(17))/4 )^(n+1) - ( (1-sqrt(17))/4 )^(n+1))*2/sqrt(17). - Franklin T. Adams-Watters, Nov 30 2009
G.f.: G(0)/(2-x), where G(k) = 1 + 1/(1 - x*(17*k-1)/(x*(17*k+16) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + 4*x)/( x*(4*k+3 + 4*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 09 2013
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(k+1 + 4*x)/( x*(k+3/2 + 4*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 14 2013
G.f.: 1 / (1 - x / (1 - 4*x / (1 + 4*x))). - Michael Somos, Sep 15 2013
a(n) = (Sum_{1<=k<=n+1, k odd} C(n+1,k)*17^((k-1)/2))/2^n. - Vladimir Shevelev, Feb 05 2014
a(n) = 2^n*Fibonacci(n+1, 1/2) = (2/i)^n*ChebyshevU(n, i/4). - G. C. Greubel, Dec 26 2019
E.g.f.: exp(x/2)*(sqrt(17)*cosh(sqrt(17)*x/2) + sinh(sqrt(17)*x/2))/sqrt(17). - Stefano Spezia, Dec 27 2019
a(n) = A344236(n) + A344261(n). - M. Eren Kesim, May 13 2021
With an initial 0 prepended, the sequence [0, 1, 1, 5, 9, 29, 65, ...] satisfies the congruences a(n*p^k) == e*a(n*p^(k-1)) (mod p^k) for positive integers k and n and all primes p, where e = +1 for the primes p listed in A296938, e = 0 when p = 17, otherwise e = -1. - Peter Bala, Dec 28 2022
a(n) = A052923(n+2)/4. - Wolfdieter Lang, Jan 03 2024
From Peter Bala, Jun 27 2025: (Start)
The following products telescope:
Product_{k >= 0} (1 + 4^k/a(2*k+1)) = 1 + sqrt(17).
Product_{k >= 1} (1 - 4^k/a(2*k+1)) = 1/18 * (1 + sqrt(17)).
Product_{k >= 0} (1 + (-4)^k/a(2*k+1)) = (1/17) * (17 + sqrt(17)).
Product_{k >= 1} (1 - (-4)^k/a(2*k+1)) = (1/18) * (17 + sqrt(17)). (End)

Extensions

More terms from Roger L. Bagula, Sep 26 2006

A010473 Decimal expansion of square root of 17.

Original entry on oeis.org

4, 1, 2, 3, 1, 0, 5, 6, 2, 5, 6, 1, 7, 6, 6, 0, 5, 4, 9, 8, 2, 1, 4, 0, 9, 8, 5, 5, 9, 7, 4, 0, 7, 7, 0, 2, 5, 1, 4, 7, 1, 9, 9, 2, 2, 5, 3, 7, 3, 6, 2, 0, 4, 3, 4, 3, 9, 8, 6, 3, 3, 5, 7, 3, 0, 9, 4, 9, 5, 4, 3, 4, 6, 3, 3, 7, 6, 2, 1, 5, 9, 3, 5, 8, 7, 8, 6, 3, 6, 5, 0, 8, 1, 0, 6, 8, 4, 2, 9
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 4 followed by {8} repeated. - Harry J. Smith, Jun 05 2009
The spiral of Theodorus is an agglomeration of right triangles each having a hypotenuse with a length that is the square root of an integer. The original spiral stops at sqrt(17). - Alonso del Arte, Apr 30 2015
The fundamental algebraic (integer) number in the field Q(sqrt(17)) is (1 + sqrt(17))/2 = A222132. - Wolfdieter Lang, Nov 21 2023

Examples

			4.123105625617660549821409855974077025147199225373620434398633573...
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 275.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 58.

Crossrefs

Cf. A040012 (continued fraction), A222132.

Programs

  • Mathematica
    RealDigits[N[Sqrt[17], 100]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(17); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010473.txt", n, " ", d));  \\ Harry J. Smith, Jun 03 2009

A052923 Expansion of (1-x)/(1 - x - 4*x^2).

Original entry on oeis.org

1, 0, 4, 4, 20, 36, 116, 260, 724, 1764, 4660, 11716, 30356, 77220, 198644, 507524, 1302100, 3332196, 8540596, 21869380, 56031764, 143509284, 367636340, 941673476, 2412218836, 6178912740, 15827788084, 40543439044, 103854591380
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

First differences of A006131.
This sequence {a(n)} appears in the formula for powers of c = (1 + sqrt(17))/2 = A222132, the fundamental (integer) algebraic number of Q(sqrt(17)): c^n = a(n) + A006131(n-1)*c. This is also valid for positive powers of 1/c = (-1 + sqrt(17)) /8. See the formula below and in A006131 in terms of Chebyshev or Fibonacci polynomials. - Wolfdieter Lang, Nov 27 2023

Crossrefs

Programs

  • GAP
    a:=[1,0];; for n in [3..30] do a[n]:=a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Oct 16 2019
    a := n -> -(2*I)^n*ChebyshevU(n-2, -I/4):
    seq(simplify(a(n)), n = 0..28);  # Peter Luschny, Dec 03 2023
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1 -x -4*x^2) )); // G. C. Greubel, Oct 16 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Sequence(Z),Z,Union(Z,Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(coeff(series((1-x)/(1 -x -4*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
  • Mathematica
    LinearRecurrence[{1,4}, {1,0}, 30] (* G. C. Greubel, Oct 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1 -x -4*x^2)) \\ G. C. Greubel, Oct 16 2019
    
  • Sage
    def A052923_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)/(1 -x -4*x^2)).list()
    A052923_list(30) # G. C. Greubel, Oct 16 2019
    

Formula

G.f.: (1-x)/(1 - x - 4*x^2).
a(n) = a(n-1) + 4*a(n-2), with a(0)=1, a(1)=0.
a(n) = Sum_{alpha=RootOf(-1+z+4*z^2)} (1/17)*(-1+9*alpha)*alpha^(-1-n).
If p[1]=0, and p[i]=4, ( i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
From Wolfdieter Lang, Nov 27 2023: (Start)
a(n) = 4*A006131(n-2), with A006131(-2) = 1/4 and A006131(-1) = 0.
a(n) = -(-2*i)^n*S(n-2, i/2), with i = sqrt(-1), and the S-Chebyshev polynomials (see A049310). S(-n, x) = -S(n-2, x). The Fibonacci polynomials are F(n, x) = (-i)^(n-1)*S(n-1, i*x). (End)

Extensions

More terms from James Sellers, Jun 06 2000

A235162 Decimal expansion of (sqrt(33) + 1) / 2.

Original entry on oeis.org

3, 3, 7, 2, 2, 8, 1, 3, 2, 3, 2, 6, 9, 0, 1, 4, 3, 2, 9, 9, 2, 5, 3, 0, 5, 7, 3, 4, 1, 0, 9, 4, 6, 4, 6, 5, 9, 1, 1, 0, 1, 3, 2, 2, 2, 8, 9, 9, 1, 3, 9, 6, 1, 8, 3, 8, 4, 9, 9, 3, 8, 7, 3, 5, 2, 8, 2, 9, 5, 0, 3, 6, 0, 7, 2, 8, 7, 0, 2, 3, 1, 3, 5, 1, 3, 5, 6, 2, 6, 8, 2, 7, 9, 8, 3, 9, 4
Offset: 1

Views

Author

Jaroslav Krizek, Feb 06 2014

Keywords

Comments

Solution of y^2 - y - 8 = 0.
Decimal expansion of sqrt(8 + sqrt(8 + sqrt(8 + sqrt(8 + ... )))).
The sequence with a(1) = 2 is decimal expansion of sqrt(8 - sqrt(8 - sqrt(8 - sqrt(8 - ... )))).
A basis for the integers of the real quadratic number field K(sqrt(33)) is
<1, omega(33)>, where omega(33) = (1 + sqrt(33))/2. - Wolfdieter Lang, Feb 11 2020

Examples

			3.37228132326901432992530573410946465911013222899139618384993873528...
		

Crossrefs

Programs

  • MATLAB
    val = vpa((sqrt(sym(33))+1)/2,10001); list = char(val)-'0'; list = list([1,3:end-1]); % Christopher M. Conrey, Jan 26 2022
  • Mathematica
    RealDigits[(1 + Sqrt[33])/2, 10, 130]

A222133 Decimal expansion of sqrt(4 - sqrt(4 - sqrt(4 - sqrt(4 - ... )))).

Original entry on oeis.org

1, 5, 6, 1, 5, 5, 2, 8, 1, 2, 8, 0, 8, 8, 3, 0, 2, 7, 4, 9, 1, 0, 7, 0, 4, 9, 2, 7, 9, 8, 7, 0, 3, 8, 5, 1, 2, 5, 7, 3, 5, 9, 9, 6, 1, 2, 6, 8, 6, 8, 1, 0, 2, 1, 7, 1, 9, 9, 3, 1, 6, 7, 8, 6, 5, 4, 7, 4, 7, 7, 1, 7, 3, 1, 6, 8, 8, 1, 0, 7, 9, 6, 7, 9, 3, 9, 3, 1, 8, 2, 5, 4, 0, 5, 3, 4, 2, 1, 4, 8, 3, 4, 2, 2, 7
Offset: 1

Views

Author

Jaroslav Krizek, Feb 08 2013

Keywords

Comments

Sequence with a(1) = 2 is the decimal expansion of sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... )))) = - A222132.
This is the positive root of the minimal polynomial x^2 + x - 4, with negative root -A222132. - Wolfdieter Lang, Dec 10 2022

Examples

			1.561552812808830274910704...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[17] - 1)/2, 10, 130]

Formula

Closed form: (sqrt(17) - 1)/2 = A178255-2 = A082486-3 = A222132-1.
sqrt(4 - sqrt(4 - sqrt(4 - sqrt(4 - ... )))) + 1 = sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... )))). See A222132.

A277236 Number of strings of length n composed of symbols from the circular list [1,2,3,4] such that adjacent symbols in the string must be adjacent in the list. No runs of length 2 or more are allowed for symbols 1 and 3.

Original entry on oeis.org

1, 4, 10, 26, 66, 170, 434, 1114, 2850, 7306, 18706, 47930, 122754, 314474, 805490, 2063386, 5285346, 13538890, 34680274, 88835834, 227556930, 582900266, 1493127986, 3824729050, 9797240994, 25096157194, 64285121170, 164669749946, 421810234626, 1080489234410, 2767730172914
Offset: 0

Views

Author

Stefan Hollos, Oct 06 2016

Keywords

Comments

To generalize to strings composed of symbols from the circular list [1,2,3,...2m], m>=2, with no runs of 2 or more allowed for symbols 1,3,5,...2m-1, use the same recurrence given below with initial values a(1)=2m, a(2)=5m, see A277237 for the m=3 case.

Examples

			For n=3 the 26 strings are 121, 122, 123, 141, 143, 144, 212, 214, 221, 222, 223, 232, 234, 321, 322, 323, 341, 343, 344, 412, 414, 432, 434, 441, 443, 444.
For n=4 the 66 strings are 1212, 1214, 1221, 1222, 1223, 1232, 1234, 1412, 1414, 1432, 1434, 1441, 1443, 1444, 2121, 2122, 2123, 2141, 2143, 2144, 2212, 2214, 2221, 2222, 2223, 2232, 2234, 2321, 2322, 2323, 2341, 2343, 2344, 3212, 3214, 3221, 3222, 3223, 3232, 3234, 3412, 3414, 3432, 3434, 3441, 3443, 3444, 4121, 4122, 4123, 4141, 4143, 4144, 4321, 4322, 4323, 4341, 4343, 4344, 4412, 4414, 4432, 4434, 4441, 4443, 4444.
		

Crossrefs

Cf. A222132 (z1), A277237.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 3 x + 2 x^2)/(1 - x - 4 x^2), {x, 0, 30}], x] (* Michael De Vlieger, Oct 07 2016 *)
    LinearRecurrence[{1,4},{1,4,10},40] (* Harvey P. Dale, Jul 12 2025 *)
  • PARI
    Vec((1+3*z+2*z^2)/(1-z-4*z^2) + O(z^40)) \\ Michel Marcus, Oct 06 2016

Formula

G.f.: (1+3*x+2*x^2)/(1-x-4*x^2).
For n>=3, the recurrence is a(n) = a(n-1) + 4*a(n-2), a(1)=4, a(2)=10.
a(n) = ((13+3*sqrt(17))*z1^n-(13-3*sqrt(17))*z2^n)/(4*sqrt(17)) where z1=(1+sqrt(17))/2 and z2=(1-sqrt(17))/2.

A305834 Triangle read by rows: T(0,0)= 1; T(n,k)= T(n-1,k) + 4*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 4, 1, 8, 1, 12, 16, 1, 16, 48, 1, 20, 96, 64, 1, 24, 160, 256, 1, 28, 240, 640, 256, 1, 32, 336, 1280, 1280, 1, 36, 448, 2240, 3840, 1024, 1, 40, 576, 3584, 8960, 6144, 1, 44, 720, 5376, 17920, 21504, 4096
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013611 ((1+4*x)^n).
The coefficients in the expansion of 1/(1-x-4*x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.5615528128...: A222132 (sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... ))))), when n approaches infinity.

Examples

			Triangle begins:
1;
1;
1,  4;
1,  8;
1, 12,   16;
1, 16,   48;
1, 20,   96,    64;
1, 24,  160,   256;
1, 28,  240,   640,    256;
1, 32,  336,  1280,   1280;
1, 36,  448,  2240,   3840,   1024;
1, 40,  576,  3584,   8960,   6144;
1, 44,  720,  5376,  17920,  21504,    4096;
1, 48,  880,  7680,  32256,  57344,   28672;
1, 52, 1056, 10560,  53760, 129024,  114688,   16384;
1, 56, 1248, 14080,  84480, 258048,  344064,  131072;
1, 60, 1456, 18304, 126720, 473088,  860160,  589824,  65536;
1, 64, 1680, 23296, 183040, 811008, 1892352, 1966080, 589824;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 371, 372.

Crossrefs

Row sums give A006131.
Cf. A000012 (column 0), A008586 (column 1), A035008 (column 2), A141478 (column 3), A120054 (column 4).
Cf. A013611.
Cf. A222132.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 4 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1/(1 - t*x - 4*t^2).
Column k is binomial (n + k - 1, k) * 4^k.

A365750 Decimal expansion of the largest root of the polynomial x^3 - x^2 - 3*x + 1.

Original entry on oeis.org

2, 1, 7, 0, 0, 8, 6, 4, 8, 6, 6, 2, 6, 0, 3, 3, 7, 2, 2, 7, 0, 3, 2, 5, 5, 7, 6, 4, 4, 2, 5, 3, 7, 0, 9, 2, 5, 4, 2, 0, 1, 3, 9, 6, 2, 9, 8, 2, 3, 3, 0, 9, 9, 5, 3, 6, 6, 8, 7, 2, 7, 4, 0, 6, 3, 8, 6, 8, 4, 5, 0, 5, 0, 1, 7, 0, 7, 4, 7, 3, 8, 9, 6, 7, 5, 6, 5, 4
Offset: 1

Views

Author

Stefano Spezia, Sep 19 2023

Keywords

Comments

It is the spectral radius of the paw graph.

Examples

			2.1700864866260337227032557644253...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[1/3+2/3Sqrt[10]Cos[1/3ArcCos[10^(-3/2)]],10,88]]

Formula

Equals 1/3 + (2/3)*sqrt(10)*cos((1/3)*arccos(10^(-3/2))).
Showing 1-10 of 16 results. Next