A008531 Coordination sequence for {A_4}* lattice.
1, 10, 50, 150, 340, 650, 1110, 1750, 2600, 3690, 5050, 6710, 8700, 11050, 13790, 16950, 20560, 24650, 29250, 34390, 40100, 46410, 53350, 60950, 69240, 78250, 88010, 98550, 109900, 122090, 135150, 149110, 164000, 179850, 196690, 214550, 233460, 253450
Offset: 0
References
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Beck and S. Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A222408.
Programs
-
GAP
Concatenation([1], List([1..45], n-> 5*n*(1+n^2))); # G. C. Greubel, Nov 10 2019
-
Magma
[1] cat [5*n*(1+n^2): n in [1..45]]; // G. C. Greubel, Nov 10 2019
-
Maple
1, seq( 5*k^3+5*k, k=1..40);
-
Mathematica
CoefficientList[Series[(1 +6x +16x^2 +6x^3 +x^4)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *) LinearRecurrence[{4,-6,4,-1},{1,10,50,150,340},40] (* Harvey P. Dale, Jun 09 2016 *)
-
PARI
a(n)=5*n*(n^2+1) \\ Charles R Greathouse IV, Mar 08 2013
-
Sage
[1]+[5*n*(1+n^2) for n in (1..45)] # G. C. Greubel, Nov 10 2019
Formula
G.f.: (1 +6*x +16*x^2 +6*x^3 +x^4)/(1-x)^4. - Colin Barker, Sep 21 2012
E.g.f.: 1 + x*(10 + 15*x + 5*x^2)*exp(x). - G. C. Greubel, Nov 10 2019
Comments