cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A034602 Wolstenholme quotient W_p = (binomial(2p-1,p) - 1)/p^3 for prime p=A000040(n).

Original entry on oeis.org

1, 5, 265, 2367, 237493, 2576561, 338350897, 616410400171, 7811559753873, 17236200860123055, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067, 59296957594629000880904587621, 844326030443651782154010715715
Offset: 3

Views

Author

Keywords

Comments

Equivalently, (binomial(2p,p)-2)/(2*p^3) where p runs through the primes >=5.
The values of this sequence's terms are replicated by conjectured general formula, given in A223886 (and also added to the formula section here) for k=2, j=1 and n>=3. - Alexander R. Povolotsky, Apr 18 2013

Examples

			Binomial(10,5)-2 = 250; 5^3=125 hence a(5)=1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.

Crossrefs

Cf. A177783 (alternative definition of Wolstenholme quotient), A072984, A092101, A092103, A092193, A128673, A217772, A223886, A263882.

Programs

  • Magma
    [(Binomial(2*p-1,p)-1) div p^3: p in PrimesInInterval(4,100)]; // Vincenzo Librandi, Nov 23 2015
  • Maple
    f:= proc(n) local p;
    p:= ithprime(n);
    (binomial(2*p-1,p)-1)/p^3
    end proc:
    map(f, [$3..30]); # Robert Israel, Dec 19 2018
  • Mathematica
    Table[(Binomial[2 Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^3, {n, 3, 20}] (* Vincenzo Librandi, Nov 23 2015 *)

Formula

a(n) = (A088218(p)-1)/p^3 = (A001700(p-1)-1)/p^3 = (A000984(p)-2)/(2*p^3), where p=A000040(n).
a(n) = A087754(n)/2.
a(n) = (binomial(j*k*prime(n), j*prime(n)) - binomial(k*j, j)) / (k*prime(n)^3) for k=2, j=1, and n>=3. - Alexander R. Povolotsky, Apr 18 2013
a(n) = A263882(n)/prime(n) for n > 2. - Jonathan Sondow, Nov 23 2015
a(n) = numerator(tanh(Sum_{k=1..p-1} artanh(k/p)))/p^3, where p = prime(n) for n >= 3. - Thomas Ordowski, Apr 17 2025

Extensions

Edited by Max Alekseyev, May 14 2010
More terms from Vincenzo Librandi, Nov 23 2015

A217772 a(n) = ((p+1)*(3p)!/((2p-1)!*(p+1)!*2p) - 3)/(3p^3), where p is the n-th prime.

Original entry on oeis.org

1, 8, 113, 48469, 1232351, 1002175798, 30956114561, 32956274508457, 1386101220044940571, 50017672586399947073, 2548160990547719392420658, 3694160975065765801289789930, 142486973648670437070915061157
Offset: 2

Views

Author

Keywords

Comments

This sequence is based on Gary Detlefs's conjecture, which he posted as a comment to A005809. His conjecture is equivalent to the conjecture that the Diophantine equation ((n+1)*(3*n)!/((2*n-1)!*(n+1)!*2*n)-3)/n^3 = m has integer solutions m for all odd primes n.
Additionally I conjecture that all m are divisible by 3, therefore terms of this sequence a(n) = m/3.
It is also notable that for quite a few values of n (2, 3, 4, 5, 6, 7, 17, 19, 21, 22, 23, 24, 25, 26, 35, 39, 43, ...) a(n+1) = a(n) mod 7.
The values of this sequence's terms are replicated by conjectured general formula, given in A223886 (and also added to the formula section here) for k=3, j=1 and n>=2. - Alexander R. Povolotsky, Apr 18 2013
For n>=3 and k>=2 ((binomial(k*p,p)-k)/p^3)/k is an integer. For k=2 this is the Wolstenholme quotient (A034602) and for k=3 the current sequence. - Peter Luschny, Feb 09 2016

Crossrefs

Programs

  • Maple
    WQ := proc(n,k) local p; p := ithprime(n); ((binomial(k*p,p)-k)/p^3)/k end:
    seq(WQ(n,3), n=2..14); # Peter Luschny, Feb 09 2016
  • PARI
    a(n)=my(p=prime(n)); (binomial(3*p,p+1)*(p+1)/(2*p)-3)/(3*p^3) \\ Charles R Greathouse IV, Mar 26 2013

Formula

a(n) = (binomial(j*k*prime(n), j*prime(n)) - binomial(k*j, j))/(k*prime(n)^3) for k=3, j=1 and n>=2 (conjectured). - Alexander R. Povolotsky, Apr 18 2013
Showing 1-2 of 2 results.