cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A226359 Number of ordered triples (i,j,k) with |i|, |j|, |k|, |i*j*k| <= n.

Original entry on oeis.org

1, 27, 93, 183, 321, 459, 669, 855, 1121, 1379, 1685, 1967, 2393, 2723, 3125, 3551, 4049, 4475, 5045, 5519, 6137, 6707, 7301, 7871, 8681, 9323, 10013, 10735, 11545, 12259, 13189, 13951, 14881, 15739, 16621, 17527, 18673, 19579, 20557, 21559, 22753, 23755
Offset: 0

Views

Author

Robert Price, Jun 04 2013

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Length[Complement[Union[Flatten[Table[If[Abs[i*j*k] <=  n, {i, j, k}], {i, -n, n}, {j, -n, n}, {k, -n, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]
  • PARI
    a(n)=12*n^2+6*n+1+8*sum(i=1, n, n\i*numdiv(i)) \\ Charles R Greathouse IV, Jun 04 2013

A226602 Number of ordered triples (i,j,k) with i*j*k = n, i,j,k >= 0 and gcd(i,j,k) <= 1.

Original entry on oeis.org

1, 1, 3, 3, 6, 3, 9, 3, 9, 6, 9, 3, 18, 3, 9, 9, 12, 3, 18, 3, 18, 9, 9, 3, 27, 6, 9, 9, 18, 3, 27, 3, 15, 9, 9, 9, 36, 3, 9, 9, 27, 3, 27, 3, 18, 18, 9, 3, 36, 6, 18, 9, 18, 3, 27, 9, 27, 9, 9, 3, 54, 3, 9, 18, 18, 9, 27, 3, 18, 9, 27, 3, 54, 3, 9, 18, 18
Offset: 0

Views

Author

Robert Price, Jun 13 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.
a(n) is the number of cubefree divisors summed over the divisors of n. In other words, a(n) = Sum_{d|n} A073184(d). - Geoffrey Critzer, Mar 20 2015

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, t, g) option remember; `if`(t=0,
          `if`(igcd(n, g)=1, 1, 0), add(b(n/d, t-1,
          igcd(g, d)), d=divisors(n)))
        end:
    a:= n-> `if`(n=0, 1, b(n, 2, 0)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 20 2015
  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k == n && GCD[i, j, k] <= 1, {i, j, k}], {i, 0,n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]
    a[0] = a[1] = 1; a[n_] := Times @@ (3 * Last[#] & /@ FactorInteger[n]); Array[a, 100, 0] (* Amiram Eldar, Sep 14 2020 *)
  • Python
    from math import prod
    from sympy import factorint
    def A226602(n): return prod(3*e for e in factorint(n).values()) if n else 1 # Chai Wah Wu, Dec 26 2022

Formula

From Geoffrey Critzer, Mar 20 2015: (Start)
If n = p_1^e_1*p_2^e_2*...*p_r^e_r then a(n) = Product_{i=1..r} 3*e_i.
Dirichlet g.f.: zeta(s)^3/zeta(3*s). (End)
From Werner Schulte, May 13 2018: (Start)
Multiplicative with a(p^e) = 3*e, p prime and e>0.
Dirichlet inverse b(n), n>0, is multiplicative with b(1) = 1, and for p prime and e>0: b(p^e)=0 if e mod 3 = 0 otherwise b(p^e)=3*(-1)^(e mod 3).
Dirichlet convolution with A007427(n) yields A212793(n).
Dirichlet convolution with A008836(n) yields A092520(n).
Equals Dirichlet convolution of A034444(n) and A056624(n).
Equals Dirichlet convolution of A000005(n) and A212793(n). (End)
Sum_{k=1..n} a(k) ~ n/(2*Zeta(3)) * (log(n)^2 + 2*log(n) * (-1 + 3*gamma - 3*Zeta'(3)/Zeta(3)) + 2 + 6*gamma^2 - 6*sg1 + 6*Zeta'(3)/Zeta(3) + 18*Zeta'(3)^2/Zeta(3)^2 - 6*gamma*(1 + 3*Zeta'(3)/Zeta(3)) - 9*Zeta''(3)/Zeta(3)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Feb 07 2019
a(n) = A005361(n) * A074816(n). - Vaclav Kotesovec, Feb 27 2023

A222945 Number of distinct sums i+j+k with |i|, |j|, |k|, |i*j*k| <= n.

Original entry on oeis.org

1, 7, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225
Offset: 0

Views

Author

Robert Price, Jun 12 2013

Keywords

Comments

Apparently a(n) = A004766(n) for n>=2. - R. J. Mathar, May 26 2024

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[Abs[i*j*k] ≤ n, {i + j + k}], {i, -n, n}, {j, -n, n}, {k, -n, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]

A222947 Number of distinct sums i+j+k with |i|, |j|, |k|, |i*j*k| <= n and gcd(i,j,k) <= 1.

Original entry on oeis.org

1, 7, 9, 11, 15, 19, 21, 27, 29, 35, 37, 43, 45, 51, 53, 59, 61, 67, 69, 75, 77, 83, 85, 91, 93, 99, 101, 107, 109, 115, 117, 123, 125, 131, 133, 139, 141, 147, 149, 155, 157, 163, 165, 171, 173, 179, 181, 187, 189, 195, 197, 203, 205, 211, 213, 219, 221
Offset: 0

Views

Author

Robert Price, Jun 12 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[Abs[i*j*k] ≤ n && GCD[i, j, k] <= 1, {i + j +  k}], {i, -n, n}, {j, -n, n}, {k, -n, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]

A223133 Number of distinct sums i+j+k with i,j,k >= 0, i*j*k <= n and gcd(i,j,k) <= 1.

Original entry on oeis.org

1, 4, 5, 6, 8, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35, 38, 39, 42, 43, 46, 47, 50, 51, 54, 55, 58, 59, 62, 63, 66, 67, 70, 71, 74, 75, 78, 79, 82, 83, 86, 87, 90, 91, 94, 95, 98, 99, 102, 103, 106, 107, 110, 111, 114, 115, 118, 119, 122, 123
Offset: 0

Views

Author

Robert Price, Jun 12 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k <= n && GCD[i, j, k] <= 1, {i + j + k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]

A223134 Number of distinct sums i+j+k with i,j,k >= 0, i*j*k <= n.

Original entry on oeis.org

1, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125
Offset: 0

Views

Author

Robert Price, Jun 12 2013

Keywords

Comments

Appears to be essentially the same as A176271, A140139, A130773, A062545. - R. J. Mathar, Aug 23 2024

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k <= n, {i + j + k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]

A226378 Number of distinct sums i+j+k with i,j,k >= 0, i*j*k = n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 4, 4, 2, 1, 9, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 11, 1, 2, 4, 4, 2, 5, 1, 9, 4, 2, 1, 10
Offset: 0

Views

Author

Robert Price, Jun 12 2013

Keywords

Examples

			From _Antti Karttunen_, Aug 30 2017: (Start)
For n = 4 = 1*1*4 = 1*2*2, 1+1+4 = 6 and 1+2+2 = 5, so there are two distinct sums, and a(4) = 2.
For n = 6 = 1*1*6 = 1*2*3, 1+1+6 = 8 and 1+2+3 = 6, so there are two distinct sums, and a(6) = 2.
For n = 36, of its A034836(36) = 8 factorizations as x*y*z with 1 <= x <= y <= z: 1*1*36 = 1*2*18 = 1*3*12 = 1*4*9 = 1*6*6 = 2*2*9 = 2*3*6 = 3*3*4, sums 1+6+6 and 2+2+9 are both 13, while other triples yield unique sums, thus a(36) = 8-1 = 7. (End)
		

Crossrefs

Cf. A008578 (gives the positions of 1's after a(0)=1).
Differs from A034836 for the first time at n=36.

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k == n, {i + j + k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]
    (* Second program, more efficient: *)
    {1}~Join~Table[With[{D = Divisors@ n}, Length@ Union@ Reap[Map[Function[a, Map[Function[b, Map[Function[c, If[a b c == n, Sow[a + b + c]]], Select[D, # <= n/a b &]]], Select[D, # <= n/a &]]], D]][[-1, 1]] ], {n, 100}] (* Michael De Vlieger, Aug 24 2017 *)
  • PARI
    A226378(n) = { my(sums=Set()); if(!n,1,fordiv(n, i, for(j=i, (n/i), if(!(n%j),for(k=j, n/(i*j), if(i*j*k==n, sums = Set(concat(sums, (i+j+k)))))))); length(sums)); }; \\ Antti Karttunen, Aug 30 2017

Formula

For n >= 1, a(n) <= A034836(n). - Antti Karttunen, Aug 30 2017

A223135 Number of distinct sums i + j + k with i, j, k >= 0, i*j*k = n and gcd(i,j,k) <= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 5, 2, 2, 2, 4, 1, 5, 1, 3, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 4, 4, 2, 1, 7, 2, 4, 2, 4, 1, 5, 2, 5, 2, 2, 1, 10, 1, 2, 4, 4, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 7, 3, 2, 1, 10, 2, 2, 2, 5, 1, 8, 2, 4, 2, 2, 2, 7, 1, 4, 4, 8, 1, 5, 1, 5, 5
Offset: 0

Views

Author

Robert Price, Jun 12 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k == n && GCD[i, j, k] ≤ 1, {i + j + k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]
  • PARI
    A223135(n) = { my(sums=Set()); if(!n,1,fordiv(n, i, for(j=i, (n/i), if(!(n%j),for(k=j, n/(i*j), if((i*j*k==n)&&(gcd(i,gcd(j,k))<=1), sums = Set(concat(sums, (i+j+k)))))))); length(sums)); }; \\ Antti Karttunen, Oct 21 2017

Extensions

More terms from Antti Karttunen, Oct 21 2017

A226600 Number of ordered triples (i,j,k) with i*j*k <= n and i,j,k >= 0.

Original entry on oeis.org

1, 8, 23, 44, 74, 107, 152, 197, 255, 315, 384, 453, 543, 624, 717, 816, 927, 1032, 1158, 1275, 1413, 1548, 1689, 1830, 2004, 2160, 2325, 2497, 2683, 2860, 3067, 3256, 3469, 3676, 3889, 4108, 4360, 4585, 4822, 5065, 5335, 5584, 5863, 6124, 6406, 6694, 6979
Offset: 0

Views

Author

Robert Price, Jun 13 2013

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k <= n, {i, j, k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]

Formula

a(n) = A003215(n) + A061201(n). - Alois P. Heinz, Jun 13 2013

A226601 Number of ordered triples (i,j,k) with i*j*k <= n, i,j,k >= 0 and gcd{i,j,k} <= 1.

Original entry on oeis.org

1, 8, 17, 32, 50, 77, 98, 137, 170, 212, 245, 308, 350, 425, 470, 527, 587, 686, 740, 851, 917, 998, 1067, 1202, 1277, 1403, 1484, 1601, 1691, 1862, 1937, 2120, 2231, 2360, 2465, 2618, 2726, 2945, 3062, 3215, 3338, 3581, 3680, 3935, 4073, 4235, 4376, 4655
Offset: 0

Views

Author

Robert Price, Jun 13 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k <= n && GCD[i, j, k] ≤ 1, {i, j, k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]
Showing 1-10 of 10 results.