cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A034836 Number of ways to write n as n = x*y*z with 1 <= x <= y <= z.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 9, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 12, 1, 2, 4, 4, 2, 5, 1, 9, 4, 2, 1, 10, 2, 2, 2, 6, 1, 10, 2, 4, 2, 2, 2, 12, 1, 4, 4, 8
Offset: 1

Views

Author

Keywords

Comments

Number of boxes with integer edge lengths and volume n.
Starts the same as, but is different from, A033273. First values of n such that a(n) differs from A033273(n) are 36,48,60,64,72,80,84,90,96,100. - Benoit Cloitre, Nov 25 2002
a(n) depends only on the signature of n; the sorted exponents of n. For instance, a(12) and a(18) are the same because both 12 and 18 have signature (1,2). - T. D. Noe, Nov 02 2011
Number of 3D grids of n congruent cubes, in a box, modulo rotation (cf. A007425 and A140773 for boxes instead of cubes; cf. A038548 for the 2D case). - Manfred Boergens, Apr 06 2021

Examples

			a(12) = 4 because we can write 12 = 1*1*12 = 1*2*6 = 1*3*4 = 2*2*3.
a(36) = 8 because we can write 36 = 1*1*36 = 1*2*18 = 1*3*12 = 1*4*9 = 1*6*6 = 2*2*9 = 2*3*6 = 3*3*4.
For n = p*q, p < q primes: a(n) = 2 because we can write n = 1*1*pq = 1*p*q.
For n = p^2, p prime: a(n) = 2 because we can write n = 1*1*p^2 = 1*p*p.
		

Crossrefs

See also: writing n = x*y (A038548, unordered, A000005, ordered), n = x*y*z (this sequence, unordered, A007425, ordered), n = w*x*y*z (A007426, ordered)
Differs from A033273 and A226378 for the first time at n=36.

Programs

  • Maple
    f:=proc(n) local t1,i,j,k; t1:=0; for i from 1 to n do for j from i to n do for k from j to n do if i*j*k = n then t1:=t1+1; fi; od: od: od: t1; end;
    # second Maple program:
    A034836:=proc(n)
       local a,b,i;
       a:=0;
       b:=(l,x,h)->l<=x and x<=h;
       for i in select(`<=`,NumberTheory:-Divisors(n),iroot(n,3)) do
          a:=a+nops(select[2](b,i,NumberTheory:-Divisors(n/i),isqrt(n/i)))
       od;
       return a
    end proc;
    seq(A034836(n),n=1..100); # Felix Huber, Oct 02 2024
  • Mathematica
    Table[c=0; Do[If[i<=j<=k && i*j*k==n,c++],{i,t=Divisors[n]},{j,t},{k,t}]; c,{n,100}] (* Jayanta Basu, May 23 2013 *)
    (* Similar to the first Mathematica code but with fewer steps in Do[..] *)
    b=0; d=Divisors[n]; r=Length[d];
    Do[If[d[[h]] d[[i]] d[[j]]==n, b++], {h, r}, {i, h, r}, {j, i, r}]; b (* Manfred Boergens, Apr 06 2021 *)
    a[1] = 1; a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[IntegerQ[Surd[n, 3]], 1/3, 0] + (Times @@ ((e + 1)*(e + 2)/2))/6 + (Times @@ (Floor[e/2] + 1))/2]; Array[a, 100] (* Amiram Eldar, Apr 19 2024 *)
  • PARI
    A038548(n)=sumdiv(n, d, d*d<=n) /* <== rhs from A038548 (Michael Somos) */
    a(n)=sumdiv(n, d, if(d^3<=n, A038548(n/d) - sumdiv(n/d, d0, d0Rick L. Shepherd, Aug 27 2006
    
  • PARI
    a(n) = {my(e = factor(n)[,2]); (2 * ispower(n, 3) + vecprod(apply(x -> (x+1)*(x+2)/2, e)) + 3 * vecprod(apply(x -> x\2 + 1, e))) / 6;} \\ Amiram Eldar, Apr 19 2024

Formula

From Ton Biegstraaten, Jan 04 2016: (Start)
Given a number n, let s(1),...,s(m) be the signature list of n, and a(n) the resulting number in the sequence.
Then np = Product_{k=1..m} binomial(2+s(k),2) is the total number of products solely based on the combination of exponents. The multiplicity of powers is not taken into account (e.g., all combinations of 1,2,4 (6 times) but (2,2,2) only once). See next formulas to compute corrections for 3rd and 2nd powers.
Let ntp = Product_{k=1..m} (floor((s(k) - s(k) mod(3))/s(k))) if the number is a 3rd power or not resulting in 1 or 0.
Let nsq = Product_{k=1..m} (floor(s(k)/2) + 1) is the number of squares.
Conjecture: a(n) = (np + 3*(nsq - ntp) + 5*ntp)/6 = (np + 3*nsq + 2*ntp)/6.
Example: n = 1728; s = [3,6]; np = 10*28 = 280; nsq = 2*4 = 8; ntp = 1 so a(1728)=51 (as in the b-file).
(End)
a(n) >= A226378(n) for all n >= 1. - Antti Karttunen, Aug 30 2017
From Bernard Schott, Dec 12 2021: (Start)
a(n) = 1 iff n = 1 or n is prime (A008578).
a(n) = 2 iff n is semiprime (A001358) (see examples). (End)
a(n) = (2 * A010057(n) + A007425(n) + 3 * A046951(n))/6 (Andrica and Ionascu, 2013, p. 19, eq. 11). - Amiram Eldar, Apr 19 2024

Extensions

Definition simplified by Jonathan Sondow, Oct 03 2013

A226357 Number of ordered triples (i,j,k) with |i|,|j|,|k|,|i*j*k| <= n and gcd(i,j,k) <= 1.

Original entry on oeis.org

1, 27, 75, 147, 243, 363, 483, 651, 819, 1011, 1179, 1443, 1683, 1995, 2211, 2475, 2763, 3171, 3459, 3915, 4251, 4611, 4923, 5475, 5883, 6411, 6771, 7275, 7707, 8403, 8811, 9555, 10059, 10611, 11067, 11715, 12291, 13179, 13683, 14331, 14931, 15915, 16419
Offset: 0

Views

Author

Robert Price, Jun 04 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.

Crossrefs

|i| + |j| + |k| <= n instead of |i*j*k| <= n: A100450.
This sequence (A226357) without the GCD qualifier: A226359.
Distinct sums i+j+k with the GCD qualifier: A222947.
Distinct sums i+j+k without the GCD qualifier: A222945.
Distinct products i*j*k with or without the GCD qualifier is 2n+1: A005408.
With the further restriction i,j,k >= 0 ...
Distinct sums i+j+k <= n with the GCD qualifier: A223133.
Distinct sums i+j+k <= n without the GCD qualifier: A223134.
Distinct products i*j*k with or without the GCD qualifier is n+1: A000217(n+1).
Distinct sums i+j+k with i*j*k = n with the GCD qualifier: A223135.
Distinct sums i+j+k with i*j*k = n without the GCD qualifier: A226378.
Distinct products i*j*k with i*j*k = n with or without the GCD qualifier is trivial and always 1: A000012.
Ordered triples with the product <= n with the GCD qualifier: A226001.
Ordered triples with the product <= n without the GCD qualifier: A226600.
Ordered triples with the product = n with the GCD qualifier: A226602.
Ordered triples with the product = n without the GCD qualifier: A007425.

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[Abs[i*j*k] <=  n && GCD[i, j, k] <= 1, {i, j, k}], {i, -n, n}, {j, -n, n}, {k, -n, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]

A223135 Number of distinct sums i + j + k with i, j, k >= 0, i*j*k = n and gcd(i,j,k) <= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 5, 2, 2, 2, 4, 1, 5, 1, 3, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 4, 4, 2, 1, 7, 2, 4, 2, 4, 1, 5, 2, 5, 2, 2, 1, 10, 1, 2, 4, 4, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 7, 3, 2, 1, 10, 2, 2, 2, 5, 1, 8, 2, 4, 2, 2, 2, 7, 1, 4, 4, 8, 1, 5, 1, 5, 5
Offset: 0

Views

Author

Robert Price, Jun 12 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k == n && GCD[i, j, k] ≤ 1, {i + j + k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]
  • PARI
    A223135(n) = { my(sums=Set()); if(!n,1,fordiv(n, i, for(j=i, (n/i), if(!(n%j),for(k=j, n/(i*j), if((i*j*k==n)&&(gcd(i,gcd(j,k))<=1), sums = Set(concat(sums, (i+j+k)))))))); length(sums)); }; \\ Antti Karttunen, Oct 21 2017

Extensions

More terms from Antti Karttunen, Oct 21 2017
Showing 1-3 of 3 results.