cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226513 Array read by antidiagonals: T(n,k) = number of barred preferential arrangements of k things with n bars (k >=0, n >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 8, 13, 1, 4, 15, 44, 75, 1, 5, 24, 99, 308, 541, 1, 6, 35, 184, 807, 2612, 4683, 1, 7, 48, 305, 1704, 7803, 25988, 47293, 1, 8, 63, 468, 3155, 18424, 87135, 296564, 545835, 1, 9, 80, 679, 5340, 37625, 227304, 1102419, 3816548, 7087261
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2013

Keywords

Comments

The terms of this sequence are also called high-order Fubini numbers (see p. 255 in Komatsu). - Stefano Spezia, Dec 06 2020

Examples

			Array begins:
  1  1   3   13    75    541     4683     47293     545835 ...
  1  2   8   44   308   2612    25988    296564    3816548 ...
  1  3  15   99   807   7803    87135   1102419   15575127 ...
  1  4  24  184  1704  18424   227304   3147064   48278184 ...
  1  5  35  305  3155  37625   507035   7608305  125687555 ...
  1  6  48  468  5340  69516  1014348  16372908  289366860 ...
  ...
Triangle begins:
  1,
  1, 1,
  1, 2, 3,
  1, 3, 8, 13,
  1, 4, 15, 44, 75,
  1, 5, 24, 99, 308, 541,
  1, 6, 35, 184, 807, 2612, 4683,
  1, 7, 48, 305, 1704, 7803, 25988, 47293,
  1, 8, 63, 468, 3155, 18424, 87135, 296564, 545835
  ........
[_Vincenzo Librandi_, Jun 18 2013]
		

References

  • Z.-R. Li, Computational formulae for generalized mth order Bell numbers and generalized mth order ordered Bell numbers (in Chinese), J. Shandong Univ. Nat. Sci. 42 (2007), 59-63.

Crossrefs

Columns 2, 3 = A005563, A226514.
Cf. A053492 (array diagonal), A265609, A346982.

Programs

  • Maple
    T:= (n, k)-> k!*coeff(series(1/(2-exp(x))^(n+1), x, k+1), x, k):
    seq(seq(T(d-k, k), k=0..d), d=0..10);  # Alois P. Heinz, Mar 26 2016
  • Mathematica
    T[n_, k_] := Sum[StirlingS2[k, i]*i!*Binomial[n+i, i], {i, 0, k}]; Table[ T[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 26 2016 *)

Formula

T(n,k) = Sum_{i=0..k} S2_k(i)*i!*binomial(n+i,i), where S2_k(i) is the Stirling number of the second kind. - Jean-François Alcover, Mar 26 2016
T(n,k) = k! * [x^k] 1/(2-exp(x))^(n+1). - Alois P. Heinz, Mar 26 2016
Conjectural g.f. for row n as a continued fraction of Stieltjes type: 1/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 4*x/(1 - (n+3)*x/(1 - 6*x/(1 - ... ))))))). Cf. A265609. - Peter Bala, Aug 27 2023
From Seiichi Manyama, Nov 19 2023: (Start)
T(n,0) = 1; T(n,k) = Sum_{j=1..k} (n*j/k + 1) * binomial(k,j) * T(n,k-j).
T(n,0) = 1; T(n,k) = (n+1)*T(n,k-1) - 2*Sum_{j=1..k-1} (-1)^j * binomial(k-1,j) * T(n,k-j). (End)
G.f. for row n: (1/n!) * Sum_{m>=0} (n+m)! * x^m / Product_{j=1..m} (1 - j*x), for n >= 0. - Paul D. Hanna, Feb 01 2024