cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A226960 Numbers n such that 1^n + 2^n + 3^n +...+ n^n == 2 (mod n).

Original entry on oeis.org

1, 4, 12, 84, 3612
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 2 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -2 (mod n). - Max Alekseyev, Aug 25 2013

Crossrefs

Subsequence of A124240.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), this sequence (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 2 &]
  • PARI
    is(n)=if(n%2,return(n==1)); Mod(sumdiv(n/2,d, if(isprime(2*d+1), n/(2*d+1)))+n/2,n)==-2 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

a(1)=1 prepended by Max Alekseyev, Aug 25 2013

A226961 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 3 (mod n).

Original entry on oeis.org

1, 2, 3, 18, 126, 5418
Offset: 1

Views

Author

Keywords

Comments

Equivalently, numbers n such that B(n)*n == 3 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -3 (mod n). - Max Alekseyev, Aug 25 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), this sequence (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 3 &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-3 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

1, 2, 3 prepended by Max Alekseyev, Aug 25 2013

A226963 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 5 (mod n).

Original entry on oeis.org

1, 2, 5, 10, 30, 210, 9030, 235290, 11072512110
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 5 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -5 (mod n). - Max Alekseyev, Aug 26 2013
There are no other terms below 10^31. - Max Alekseyev, Apr 04 2018

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), this sequence (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 5 &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-5 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

Terms 1,2,5 prepended and a(9) added by Max Alekseyev, Aug 26 2013

A226967 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 9 (mod n).

Original entry on oeis.org

1, 2, 3, 9, 54, 378, 16254
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 9 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -9 (mod n). There are no other terms below 10^30. - Max Alekseyev, Aug 26 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962(m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), this sequence (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == Mod[9,#] &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-9 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

1,2,9 prepended by Max Alekseyev, Aug 26 2013

A226964 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 6 (mod n).

Original entry on oeis.org

1, 3, 4, 20, 36, 252, 10836
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 6 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -6 (mod n). There are no other terms below 10^15. - Max Alekseyev, Aug 26 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), this sequence (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 6 &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-6 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

1,3,4 prepended by Max Alekseyev, Aug 26 2013

A226965 Numbers n such that 1^n + 2^n + 3^n +...+ n^n == 7 (mod n).

Original entry on oeis.org

1, 2, 6, 7, 14, 294, 12642
Offset: 1

Views

Author

Keywords

Comments

Also, integers n such that B(n)*n == 7 (mod n), where B(n) is the n-th Bernoulli number, or SUM[prime p, (p-1) divides n] n/p == -7 (mod n). It is easy to see that for n>1, every prime divisor p of n, except p=7, must appear in first power, while p=7 may appear in first or second power. Moreover, the multiset P of prime divisors of all such n satisfies the property: if p is in P, then p-1 is the product of distinct elements of P. This multiset is P = {2, 3, 7, 7, 43}, implying that the sequence is finite and complete. - Max Alekseyev, Aug 25 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962(m=4), A226963 (m=5), A226964 (m=6), this sequence (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 7&]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-7 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

Corrected and keywords full,fini added by Max Alekseyev, Aug 25 2013

A226966 Numbers n such that 1^n + 2^n + 3^n + ... + n^n == 8 (mod n).

Original entry on oeis.org

1, 16, 48, 336, 14448
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that B(n)*n == 8 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -8 (mod n). There are no other terms below 10^15. - Max Alekseyev, Aug 26 2013

Crossrefs

Cf. A031971.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962(m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), this sequence (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 8 &]
  • PARI
    is(n)=Mod(sumdiv(n, d, if(isprime(d+1), n/(d+1))), n)==-8 \\ Charles R Greathouse IV, Nov 13 2013

Extensions

a(1)=1 prepended by Max Alekseyev, Aug 26 2013

A302343 Solutions to the congruence 1^n + 2^n + ... + n^n == 79 (mod n).

Original entry on oeis.org

1, 2, 6, 79, 158, 474, 3318, 142674
Offset: 1

Views

Author

Max Alekseyev, Apr 05 2018

Keywords

Comments

Also, integers n such that B(n)*n == 79 (mod n), where B(n) is the n-th Bernoulli number.
Also, integers n such that Sum_{prime p, (p-1) divides n} n/p == -79 (mod n).
Although this sequence is finite, the prime 79 does not belong to A302345.

Crossrefs

Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), this sequence (m=79), A302344 (m=193).
Cf. A302345.

A302344 Solutions to the congruence 1^n + 2^n + ... + n^n == 193 (mod n).

Original entry on oeis.org

1, 2, 6, 193, 386, 1158, 8106, 348558
Offset: 1

Views

Author

Max Alekseyev, Apr 05 2018

Keywords

Comments

Also, integers n such that B(n)*n == 193 (mod n), where B(n) is the n-th Bernoulli number.
Also, integers n such that Sum_{prime p, (p-1) divides n} n/p == -193 (mod n).
Although this sequence is finite, the prime 193 does not belong to A302345.

Crossrefs

Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), this sequence (m=193).
Cf. A302345.

A302345 Primes p such that the set { 1+2p, 1+6p, 1+14p, 1+42p, 1+86p, 1+258p, 1+602p, 1+1806p } does not contain any primes.

Original entry on oeis.org

67, 97, 127, 163, 307, 317, 337, 349, 409, 521, 523, 547, 643, 709, 757, 811, 839, 857, 919, 967, 997, 1021, 1069, 1087, 1093, 1153, 1277, 1291, 1297, 1301, 1399, 1429, 1459, 1483, 1619, 1627, 1637, 1697, 1709, 1721, 1741, 1789, 1877, 1933, 1949, 1999, 2017, 2029, 2083, 2131, 2179, 2239, 2269, 2311, 2383, 2389, 2437, 2503, 2539, 2557, 2591, 2659, 2671, 2707, 2731
Offset: 1

Views

Author

Max Alekseyev, Apr 05 2018

Keywords

Comments

For each term p, the solutions n to the congruence 1^n + 2^n + ... + n^n == p (mod n) form a subset of A014117 U p*A014117. In particular, there are at most 10 solutions for each such p.
The coefficients { 2, 6, 14, 42, 86, 258, 602, 1806 } are the even divisors of 1806 = 2 * 3 * 7 * 43.

Crossrefs

Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), A226960 (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).

Programs

  • Mathematica
    Select[Range[3000], PrimeQ[#] && AllTrue[{2, 6, 14, 42, 86, 258, 602, 1806}*# + 1, ! PrimeQ[#1] &] &] (* Amiram Eldar, Aug 09 2020 *)
  • PARI
    { is_A302345(p) = !vecmax( apply( x->ispseudoprime(1+x*p), 2*divisors(3*7*43) ) ); }
Showing 1-10 of 10 results.