A227140 a(n) = n/gcd(n,2^5), n >= 0.
0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 2, 65, 33, 67, 17, 69, 35
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Peter Bala, A note on the sequence of numerators of a rational function, 2019.
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
Programs
-
GAP
List([0..80], n-> n/Gcd(n, 2^5)); # G. C. Greubel, Feb 27 2019
-
Magma
[n/GCD(n, 2^5): n in [0..80]]; // G. C. Greubel, Feb 27 2019
-
Maple
seq(n/igcd(n,32),n=0..70); # Muniru A Asiru, Feb 28 2019
-
Mathematica
With[{c=2^5},Table[n/GCD[n,c],{n,0,70}]] (* Harvey P. Dale, Feb 16 2018 *)
-
PARI
a(n)=n/gcd(n, 2^5); \\ Andrew Howroyd, Jul 23 2018
-
Sage
[n/gcd(n,2^5) for n in (0..80)] # G. C. Greubel, Feb 27 2019
Formula
a(n) = n/gcd(n, 2^5).
a(n) = denominator(8*(n-4)/n), n >= 0 (with denominator(infinity) = 0).
From Peter Bala, Feb 27 2019: (Start)
a(n) = numerator(n/(n + 32)).
O.g.f.: F(x) - F(x^2) - F(x^4) - F(x^8) - F(x^16) - F(x^32), where F(x) = x/(1 - x)^2. Cf. A106617. (End)
From Bernard Schott, Mar 02 2019: (Start)
a(n) = 1 iff n is 1, 2, 4, 8, 16, 32 and a(2^n) = 2^(n-5) for n >= 5.
a(n) = n iff n is odd (A005408). (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^(e-min(e,5)), and a(p^e) = p^e for p > 2.
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s - 1/2^(2*s) - 1/2^(3*s) - 1/2^(4*s) - 1/2^(5*s)).
Sum_{k=1..n} a(k) ~ (683/2048) * n^2. (End)
Extensions
Keyword:mult added by Andrew Howroyd, Jul 23 2018
Comments