cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000735 Expansion of Product_{k>=1} (1 - x^k)^12.

Original entry on oeis.org

1, -12, 54, -88, -99, 540, -418, -648, 594, 836, 1056, -4104, -209, 4104, -594, 4256, -6480, -4752, -298, 5016, 17226, -12100, -5346, -1296, -9063, -7128, 19494, 29160, -10032, -7668, -34738, 8712, -22572, 21812, 49248, -46872, 67562, 2508, -47520, -76912, -25191, 67716
Offset: 0

Views

Author

Keywords

Comments

Glaisher (1905, 1907) calls this sequence {Omega(m): m=1,3,5,7,9,11,...}. - N. J. A. Sloane, Nov 24 2018
Number 9 of the 74 eta-quotients listed in Table I of Martin (1996). See g.f. B(q) below: cusp form of weight 6 and level 4.
Grosswald uses b_n where b_{2n+1} = a(n).
Cynk and Hulek on page 14 in "The Example of Ahlgren" refer to a_p of the unique normalized weight 6 level 4 cusp form. - Michael Somos, Aug 24 2012
Expansion of q^(-1/2) * k(q) * k'(q)^4 * (K(q) / (Pi/2))^6 / 4 in powers of q where k(), k'(), K() are Jacobi elliptic functions. In Glaisher 1907 denoted by Omega(m) defined in section 62 on page 37. - Michael Somos, May 19 2013

Examples

			G.f. A(x) = 1 - 12*x + 54*x^2 - 88*x^3 - 99*x^4 + 540*x^5 - 418*x^6 - 648*x^7 + ...
G.f. B(q) = q - 12*q^3 + 54*q^5 - 88*q^7 - 99*q^9 + 540*q^11 - 418*q^13 - 648*q^15 + ...
		

References

  • J. W. L. Glaisher, On the representations of a number as a sum of four squares, and on some allied arithmetical functions, Quarterly Journal of Pure and Applied Mathematics, 36 (1905), 305-358. See p. 340.
  • Glaisher, J. W. L. (1906). The arithmetical functions P(m), Q(m), Omega(m). Quart. J. Math, 37, 36-48.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • Newman, Morris; A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A209676 is the same except for signs.
This is a bisection of A227239.

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A000735List(len) = DedekindEta(len, 12)
    A000735List(42) |> println # Peter Luschny, Mar 10 2018
  • Magma
    Basis( CuspForms( Gamma0(4), 6), 85) [1]; /* Michael Somos, Dec 09 2013 */
    
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> -12): seq(a(n), n=0..45); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    CoefficientList[ Take[ Expand[ Product[(1 - x^k)^12, {k, 42}]], 42], x]
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^12, {q, 0, n}]; (* Michael Somos, May 19 2013 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - q^k, {k, n}]^12, {q, 0, n}]; (* Michael Somos, May 19 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^12, n))}; /* Michael Somos, Sep 21 2005 */
    
  • Sage
    CuspForms( Gamma0(4), 6, prec=85).0; # Michael Somos, May 28 2013
    

Formula

Expansion of q^(-1/2) * eta(q)^12 in powers of q.
Euler transform of period 1 sequence [-12, ...]. - Michael Somos, Sep 21 2005
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^4*w^2 + 48*(u*v*w)^2 + 4906*u^2*w^4 - u^6. - Michael Somos, Sep 21 2005
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p^5 * b(p^(e-2)). - Michael Somos, Mar 08 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 64 (t/i)^6 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 24 2012
G.f.: (Product_{k>0} (1 - x^k))^12.
A000145(n) = A029751(n) + 16*a(n). - Michael Somos, Sep 21 2005
a(n) = (-1)^n * A209676(n).
Convolution inverse of A005758. Convolution square of A000729.
a(0) = 1, a(n) = -(12/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-12*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018

A228072 Expansion of psi(x^2)^2 * phi(-x^2)^6 + 8 * x * psi(x^2)^6 * phi(-x^2)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 8, -10, 16, 37, -40, -50, -80, -30, 40, 128, 48, -25, 80, -34, 320, -320, -160, 310, -400, 410, 152, -370, -416, -87, -240, -410, 400, 320, -200, 30, 592, 500, 776, 384, 400, -630, -200, -640, -1120, -359, 552, 300, -272, -326, -800, 2560, -400, -110
Offset: 0

Views

Author

Michael Somos, Sep 02 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 8*x - 10*x^2 + 16*x^3 + 37*x^4 - 40*x^5 - 50*x^6 - 80*x^7 - 30*x^8 + ...
G.f. = q + 8*q^3 - 10*q^5 + 16*q^7 + 37*q^9 - 40*q^11 - 50*q^13 - 80*q^15 - 30*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^12 + 8 x QPochhammer[ x^4]^12) / (QPochhammer[ x^2] QPochhammer[ x^4])^2, {x, 0, n}];
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n);polcoeff( (eta(x^2 + A)^5 / eta(x^4 + A))^2 + 8 * x * (eta(x^4 + A)^5 / eta(x^2 + A))^2, n))};

Formula

Expansion of q^(-1/2) * ((eta(q^2)^5 / eta(q^4))^2 + 8 * (eta(q^4)^5 / eta(q^2))^2) in powers of q.
Expansion of q^(-1/2) * (eta(q^2)^12 + 8 * eta(q^4)^12) / ( eta(q^2) * eta(q^4) )^2 in powers of q.
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p^3 * b(p^(e-2)) if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 8^2 (t / i)^4 f(t) where q = exp(2 Pi i t).
a(2*n) = A227695(n). a(2*n + 1) = 8 * A227317(n).
If F(x) is the g.f. for A002171, then A(x) * F(x^2) = B(x) the g.f. for A227239. - Michael Somos, Jan 08 2015
Showing 1-2 of 2 results.