cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227291 Characteristic function of squarefree numbers squared (A062503).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Ralf Stephan, Jul 05 2013

Keywords

Examples

			a(3) = 0 because 3 is not the square of a squarefree number.
a(4) = 1 because sqrt(4) = 2, a squarefree number.
		

Crossrefs

Programs

  • Haskell
    a227291 n = fromEnum $ (sum $ zipWith (*) mds (reverse mds)) == 1
       where mds = a225817_row n
    -- Reinhard Zumkeller, Jul 30 2013, Jul 07 2013
    
  • Maple
    A227291 := proc(n)
        local pe;
        if n = 0 then
            1;
        else
            for pe in ifactors(n)[2] do
                if op(2,pe) <> 2 then
                    return 0 ;
                end if;
            end do:
        end if;
        1 ;
    end proc:
    seq(A227291(n),n=1..100) ; # R. J. Mathar, Feb 07 2023
  • Mathematica
    Table[Abs[Sum[MoebiusMu[n/d], {d,Select[Divisors[n], SquareFreeQ[#] &]}]], {n, 1, 200}] (* Geoffrey Critzer, Mar 18 2015 *)
    Module[{nn=120,len,sfr},len=Ceiling[Sqrt[nn]];While[!SquareFreeQ[len],len++];sfr=(Select[Range[len],SquareFreeQ])^2; Table[If[MemberQ[ sfr,n],1,0],{n,nn}]] (* Harvey P. Dale, Nov 27 2024 *)
  • PARI
    a(n)=if(n<1, 0, direuler(p=2, n, 1+X^2)[n])
    
  • PARI
    A227291(n) = factorback(apply(e->(2==e), factor(n)[,2])); \\ Antti Karttunen, Jul 14 2022
    
  • PARI
    A227291(n) = (issquare(n) && issquarefree(sqrtint(n))); \\ Antti Karttunen, Jul 14 2022
    
  • Scheme
    (define (A227291 n) (if (= 1 n) n (* (if (= 2 (A067029 n)) 1 0) (A227291 (A028234 n))))) ;; Antti Karttunen, Jul 28 2017

Formula

Dirichlet g.f.: zeta(2s)/zeta(4s) = prod[prime p: 1+p^(-2s) ], see A008966.
a(n) = A008966(A037213(n)), when assumed A008966(0) = 0. - Reinhard Zumkeller, Jul 07 2013
a(n) = A063524(sum(A225817(n,k)*A225817(n,A000005(n)+1-k): k=1..A000005(n))). - Reinhard Zumkeller, Aug 01 2013
Multiplicative with a(p^e) = 1 if e=2, a(p^e) = 0 if e=1 or e>2. - Antti Karttunen, Jul 28 2017
Sum_{k=1..n} a(k) ~ 6*sqrt(n) / Pi^2. - Vaclav Kotesovec, Feb 02 2019
a(n) = A225569(A225546(n)-1). - Peter Munn, Oct 31 2019
From Antti Karttunen, Jul 18 2022: (Start)
a(n) = A010052(n) * A008966(A000196(n)).
a(n) = Sum_{d|n} A008836(n/d) * A307430(d).
a(n) = Sum_{d|n} A007427(n/d) * A322327(d).
(End)