A227914 Length of longest chain of nonempty proper subsemigroups of the symmetric inverse monoid.
1, 6, 25, 116, 722, 5956, 59243, 667500, 8296060, 112406158, 1648441865, 26016230581, 439698829588, 7923291500266, 151636272041063, 3071397457222772, 65637064987470128, 1475783903907314842, 34822081020977308581, 860290584362463964031, 22206678791494395506940, 597775158911764084886982, 16751152450234618859184419, 487867395080603697285978385, 14745549219503008426659528806
Offset: 1
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..200
- P. J. Cameron, M. Gadouleau, J. D. Mitchell, Y. Peresse, Chains of subsemigroups, arXiv preprint arXiv:1501.06394 [math.GR], 2015.
- O. Ganyushkin and I. Livinsky, Length of the inverse symmetric semigroup, Algebra Discrete Math., 12 (2011) 64-71.
Crossrefs
Cf. A007238.
Programs
-
Mathematica
a[ n_] := Sum[ Binomial[ n, k] (Ceiling[3 k/2] - Total[IntegerDigits[ k, 2]] + 1) + Binomial[ Binomial[ n, k], 2] k! - 1, {k, n}]; (* Michael Somos, Feb 25 2014 *)
-
PARI
A007238(n) = ceil(3*n/2) - hammingweight(n) - 1; a(n) = { sum(i = 1, n+1, my(Ni = binomial(n, i-1)); Ni * (A007238(i-1) + 2) + Ni*(Ni-1)/2 * (i-1)! - 1) }; vector(25, n, a(n)) \\ Gheorghe Coserea, May 15 2016