cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A228058 Odd numbers of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1. (Euler's criteria for odd perfect numbers).

Original entry on oeis.org

45, 117, 153, 245, 261, 325, 333, 369, 405, 425, 477, 549, 605, 637, 657, 725, 801, 833, 845, 873, 909, 925, 981, 1017, 1025, 1053, 1233, 1325, 1341, 1377, 1413, 1421, 1445, 1525, 1557, 1573, 1629, 1737, 1773, 1805, 1813, 1825, 2009, 2057, 2061, 2097, 2169
Offset: 1

Views

Author

T. D. Noe, Aug 13 2013

Keywords

Comments

It has been proved that if an odd perfect number exists, it belongs to this sequence. The first term of the form p^5 * n^2 is 28125 = 5^5 * 3^2, occurring in position 520.
Sequence A228059 lists the subsequence of these numbers that are closer to being perfect than smaller numbers. - T. D. Noe, Aug 15 2013
Sequence A326137 lists terms with at least five distinct prime factors. See further comments there. - Antti Karttunen, Jun 13 2019

Crossrefs

Subsequence of A191218, and also of A228056 and A228057 (simpler versions of this sequence).
For various subsequences with additional conditions, see A228059, A325376, A325380, A325822, A326137 (with omega(n)>=5), A324898 (conjectured, subsequence if it does not contain any prime powers), A354362, A386425 (conjectured), A386427 (nondeficient terms), A386428 (powerful terms), A386429 U A351574.

Programs

  • Haskell
    import Data.List (partition)
    a228058 n = a228058_list !! (n-1)
    a228058_list = filter f [1, 3 ..] where
       f x = length us == 1 && not (null vs) &&
             fst (head us) `mod` 4 == 1 && snd (head us) `mod` 4 == 1
             where (us,vs) = partition (odd . snd) $
                             zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Aug 14 2013
    
  • Mathematica
    nn = 100; n = 1; t = {}; While[Length[t] < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1,1]]]], 4] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Aug 15 2013 *)
  • PARI
    up_to = 1000;
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(kA228058(n), k++; v[k] = n)); (v); };
    v228058 = A228058list(up_to);
    A228058(n) = v228058[n]; \\ Antti Karttunen, Apr 22 2019

Formula

From Antti Karttunen, Apr 22 2019 & Jun 03 2019: (Start)
A325313(a(n)) = -A325319(n).
A325314(a(n)) = -A325320(n).
A001065(a(n)) = A325377(n).
A033879(a(n)) = A325379(n).
A034460(a(n)) = A325823(n).
A325814(a(n)) = A325824(n).
A324213(a(n)) = A325819(n).
(End)

Extensions

Note in parentheses added to the definition by Antti Karttunen, Jun 03 2019

A228056 Numbers of the form p * m^2, where p is prime and m > 1.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 32, 44, 45, 48, 50, 52, 63, 68, 72, 75, 76, 80, 92, 98, 99, 108, 112, 116, 117, 124, 125, 128, 147, 148, 153, 162, 164, 171, 172, 175, 176, 180, 188, 192, 200, 207, 208, 212, 236, 242, 243, 244, 245, 252, 261, 268, 272, 275, 279, 284
Offset: 1

Views

Author

T. D. Noe, Aug 13 2013

Keywords

Comments

This sequence is the first step toward candidates for odd perfect numbers, A228058.

Crossrefs

Programs

  • Haskell
    import Data.List (partition)
    a228056 n = a228056_list !! (n-1)
    a228056_list = filter f [1..] where
       f x = length us == 1 && (head us > 1 || not (null vs)) where
             (us,vs) = partition odd $ a124010_row x
    -- Reinhard Zumkeller, Aug 14 2013
    
  • Mathematica
    nn = 300; Union[Select[Flatten[Table[p*n^2, {p, Prime[Range[PrimePi[nn/4]]]}, {n, 2, Sqrt[nn/2]}]], # < nn &]]
  • PARI
    list(lim)=my(v=List()); forfactored(n=2, lim\1, my(e=n[2][, 2]); if(vecsum(e%2)==1 && e!=[1]~, listput(v, n[1]))); Vec(v); \\ Charles R Greathouse IV, Oct 01 2021
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A228056(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//y**2) for y in range(2,isqrt(x)+1))
        return bisection(f,n,n) # Chai Wah Wu, Jun 06 2025

Formula

Bhat proves there are ~ (Pi^2/6-1)*x/log x members of this sequence up to x, so a(n) ~ kn log n with k = 6/(Pi^2-6) = 1.550546.... - Charles R Greathouse IV, Oct 01 2021
Showing 1-2 of 2 results.