cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A229125 Numbers of the form p * m^2, where p is prime and m > 0: union of A228056 and A000040.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 79, 80, 83, 89, 92, 97, 98, 99, 101, 103, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 128, 131, 137, 139, 147, 148, 149
Offset: 1

Views

Author

Chris Boyd, Sep 14 2013

Keywords

Comments

No term is the product of two other terms.
Squares of terms and pairwise products of distinct terms form a subsequence of A028260.
Numbers n such that A162642(n) = 1. - Jason Kimberley, Oct 10 2016
Numbers k such that A007913(k) is a prime number. - Amiram Eldar, Jul 27 2020

Crossrefs

Programs

  • Mathematica
    With[{nn=70},Take[Union[Flatten[Table[p*m^2,{p,Prime[Range[nn]]},{m,nn}]]], nn]] (* Harvey P. Dale, Dec 02 2014 *)
  • PARI
    test(n)=isprime(core(n))
    for(n=1,200,if(test(n), print1(n",")))
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A229125(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//y**2) for y in range(1,isqrt(x)+1))
        return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025

Formula

The number of terms not exceeding x is (Pi^2/6) * x/log(x) + O(x/(log(x))^2) (Cohen, 1962). - Amiram Eldar, Jul 27 2020

A228058 Odd numbers of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1. (Euler's criteria for odd perfect numbers).

Original entry on oeis.org

45, 117, 153, 245, 261, 325, 333, 369, 405, 425, 477, 549, 605, 637, 657, 725, 801, 833, 845, 873, 909, 925, 981, 1017, 1025, 1053, 1233, 1325, 1341, 1377, 1413, 1421, 1445, 1525, 1557, 1573, 1629, 1737, 1773, 1805, 1813, 1825, 2009, 2057, 2061, 2097, 2169
Offset: 1

Views

Author

T. D. Noe, Aug 13 2013

Keywords

Comments

It has been proved that if an odd perfect number exists, it belongs to this sequence. The first term of the form p^5 * n^2 is 28125 = 5^5 * 3^2, occurring in position 520.
Sequence A228059 lists the subsequence of these numbers that are closer to being perfect than smaller numbers. - T. D. Noe, Aug 15 2013
Sequence A326137 lists terms with at least five distinct prime factors. See further comments there. - Antti Karttunen, Jun 13 2019

Crossrefs

Subsequence of A191218, and also of A228056 and A228057 (simpler versions of this sequence).
For various subsequences with additional conditions, see A228059, A325376, A325380, A325822, A326137 (with omega(n)>=5), A324898 (conjectured, subsequence if it does not contain any prime powers), A354362, A386425 (conjectured), A386427 (nondeficient terms), A386428 (powerful terms), A386429 U A351574.

Programs

  • Haskell
    import Data.List (partition)
    a228058 n = a228058_list !! (n-1)
    a228058_list = filter f [1, 3 ..] where
       f x = length us == 1 && not (null vs) &&
             fst (head us) `mod` 4 == 1 && snd (head us) `mod` 4 == 1
             where (us,vs) = partition (odd . snd) $
                             zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Aug 14 2013
    
  • Mathematica
    nn = 100; n = 1; t = {}; While[Length[t] < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1,1]]]], 4] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Aug 15 2013 *)
  • PARI
    up_to = 1000;
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(kA228058(n), k++; v[k] = n)); (v); };
    v228058 = A228058list(up_to);
    A228058(n) = v228058[n]; \\ Antti Karttunen, Apr 22 2019

Formula

From Antti Karttunen, Apr 22 2019 & Jun 03 2019: (Start)
A325313(a(n)) = -A325319(n).
A325314(a(n)) = -A325320(n).
A001065(a(n)) = A325377(n).
A033879(a(n)) = A325379(n).
A034460(a(n)) = A325823(n).
A325814(a(n)) = A325824(n).
A324213(a(n)) = A325819(n).
(End)

Extensions

Note in parentheses added to the definition by Antti Karttunen, Jun 03 2019

A228057 Odd numbers of the form p * m^2, where p is prime and m > 1.

Original entry on oeis.org

27, 45, 63, 75, 99, 117, 125, 147, 153, 171, 175, 207, 243, 245, 261, 275, 279, 325, 333, 343, 363, 369, 387, 405, 423, 425, 475, 477, 507, 531, 539, 549, 567, 575, 603, 605, 637, 639, 657, 675, 711, 725, 747, 775, 801, 833, 845, 847, 867, 873, 891, 909, 925
Offset: 1

Views

Author

T. D. Noe, Aug 13 2013

Keywords

Comments

This sequence is the second step toward candidates for odd perfect numbers, A228058.

Crossrefs

Programs

  • Haskell
    a228057 n = a228057_list !! (n-1)
    a228057_list = filter odd a228056_list -- Reinhard Zumkeller, Aug 14 2013
  • Mathematica
    nn = 1000; Union[Select[Flatten[Table[p*n^2, {p, Prime[Range[2, PrimePi[nn/4]]]}, {n, 3, Sqrt[nn/2], 2}]], # < nn &]]

A290340 Numbers m such that each of the four consecutive integers m, m+1, m+2, m+3 has squarefree rank 1.

Original entry on oeis.org

17, 241, 242, 1249, 4049, 4799, 17297, 120049, 206081, 281249, 388961, 470447, 538721, 1462049, 1566449, 1808801, 1916881, 3302449, 3302450, 3693761, 3959297, 5385761, 5664976, 6118001, 6986321, 9305297, 10479041, 14268481, 16831601, 20110481, 22997761, 27661922, 28140001
Offset: 1

Views

Author

Jason Kimberley, Jul 27 2017

Keywords

Comments

A162642(k) is the squarefree rank of k.
Numbers that are the first of four consecutive terms of A228056 form a subsequence: 242, 3302450, 22997761, 27661922, 28140001, 64866050, ... consisting of those numbers m in this sequence such that m, m+1, m+2, and m+3 are all composite. - Charles R Greathouse IV, Sep 30 2021
One of for positive integer m, m+1, m+2, m+3 is of the form 4*k + 2 = 2*(2*k + 1). As 2 has an odd exponent the exponents in the prime factorization and 2*k + 1 is odd, the number of odd exponents in the prime factorization of 2*k + 1 must be 0 i.e., 2*k + 1 is a perfect square and so one of m, m+1, m+2, m+3 is of the form 2*t^2 where t is an odd square. - David A. Corneth, Nov 09 2023

Examples

			m = 17 is in the sequence as the number of odd prime exponents of each of the numbers m = 17 through m + 3 = 20 is 1. - _David A. Corneth_, Nov 06 2023
		

Crossrefs

Programs

  • Magma
    A162642:=func;
    c:=func;
    c(c(c([n:n in[1..10^6]|A162642(n)eq 1])));
    
  • PARI
    list(lim)=my(u=vectorsmall(4),v=List(),s,i); forfactored(n=2,lim\1+3, if(i++>4,i=1); s-=u[i]; s+=u[i]=(vecsum(n[2][,2]%2)==1); if(s==4, listput(v,n[1]-3))); Vec(v); \\ Charles R Greathouse IV, Sep 30 2021
    
  • PARI
    \\ See PARI link
Showing 1-4 of 4 results.