cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228353 Primes of the form 3p - 4 where p is prime.

Original entry on oeis.org

2, 5, 11, 17, 29, 47, 53, 83, 89, 107, 137, 173, 179, 197, 233, 263, 317, 389, 443, 449, 467, 569, 587, 593, 677, 683, 719, 809, 827, 839, 929, 947, 1097, 1163, 1187, 1223, 1259, 1289, 1367, 1433, 1493, 1523, 1559, 1619, 1637, 1667, 1709, 1847, 1889, 1973, 1979
Offset: 1

Views

Author

Irina Gerasimova, Aug 20 2013

Keywords

Comments

Subsequence of A003627. - Michel Marcus, May 30 2015

Crossrefs

Programs

  • Mathematica
    Select[3*Prime[Range[200]]-4, PrimeQ] (* Zak Seidov, May 24 2015 *)
  • PARI
    is(n)=n%3==2 && isprime(n\3+2) && isprime(n) \\ Charles R Greathouse IV, Mar 18 2014

Formula

a(n) = 3*A258261(n)-4. Zak Seidov, May 24 2015
a(n) >> n*log^2 n. - _Charles R Greathouse IV, Jun 04 2015

A228358 Numbers n such that 3*n - 4 is not prime.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 23, 24, 26, 27, 28, 30, 32, 33, 34, 36, 38, 40, 41, 42, 43, 44, 46, 48, 49, 50, 52, 53, 54, 55, 56, 58, 60, 62, 63, 64, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 80, 82, 83, 84, 86, 88, 90, 92, 93, 94, 96, 97, 98, 100, 101
Offset: 1

Views

Author

Vincenzo Librandi, Aug 21 2013

Keywords

Comments

After 1, all terms are given by A153170 +2. [Bruno Berselli, Aug 21 2013]

Examples

			8 is in the sequence since 3*8 - 4 = 20 is not prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..120] | not IsPrime(3*n -4)];
  • Mathematica
    Select[Range[230], ! PrimeQ[3 # - 4]&]

A258261 Primes p such that 3p - 4 is also prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 29, 31, 37, 47, 59, 61, 67, 79, 89, 107, 131, 149, 151, 157, 191, 197, 199, 227, 229, 241, 271, 277, 281, 311, 317, 367, 389, 397, 409, 421, 431, 457, 479, 499, 509, 521, 541, 547, 557, 571, 617, 631, 659, 661, 677, 691, 701, 719
Offset: 1

Views

Author

Zak Seidov, May 24 2015

Keywords

Comments

This sequence is interesting because of the comments in A258233: for n > 1, if 3 * prime(n) - 4 is prime then A258233(n) = 1 + A071704(n), otherwise A258233 (n) = A071704(n). - Zak Seidov, Jun 04 2015
Subsequence of primes of A228121. - Michel Marcus, May 30 2015

Examples

			3 * 2 - 4 = 2, 3 * 3 - 4 = 5, 3 * 5 - 4 = 11, 3 * 7 - 4 = 17, 3 * 11 - 4 = 29 are all prime, so 2, 3, 5, 7, 11 are all in the sequence.
3 * 13 - 4 = 35 = 5 * 7, so 13 is not in the sequence.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(3*p-4)]; // Vincenzo Librandi, May 25 2015
    
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[3# - 4] &]
  • PARI
    forprime(p=1,10^3,if(isprime(3*p-4),print1(p,", "))) \\ Derek Orr, May 27 2015

A247147 Numbers k such that 3*k-4 and 2^k-1 are prime.

Original entry on oeis.org

2, 3, 5, 7, 17, 19, 31, 61, 89, 107, 521, 1279, 9689, 9941, 21701, 23209, 216091, 13466917, 30402457, 57885161
Offset: 1

Views

Author

Vincenzo Librandi, Nov 21 2014

Keywords

Comments

All terms are primes.

Crossrefs

Programs

  • Magma
    [n: n in [0..10000] | IsPrime(3*n-4) and IsPrime(2^n-1)];
    
  • Mathematica
    Select[Range[10000], PrimeQ[2^# - 1] && PrimeQ[3 # - 4] &]
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(startk=1):
        for k in count(startk):
            if isprime(3*k-4) and isprime(2**k-1):
                yield k
    print(list(islice(agen(), 12))) # Michael S. Branicky, Jul 31 2022

Extensions

a(20) using A000043 from Michael S. Branicky, Jul 31 2022

A268139 Semiprimes of the form 3*n*2^n - 3*n - 2^(2+n) + 4.

Original entry on oeis.org

6, 35, 341, 2159, 6160337, 27787211, 191126044583, 412745898649251217229, 162789115166027506149234835193, 51436190754860636195130229261336259
Offset: 1

Views

Author

Vincenzo Librandi, Jan 27 2016

Keywords

Crossrefs

Programs

  • Magma
    IsSemiprime:= func; [s: n in [2..240] | IsSemiprime(s) where s is 3*n*2^n-3*n-2^(2+n)+4];
  • Mathematica
    Select[Table[3 n 2^n - 3 n - 2^(2 + n) + 4, {n, 250}], PrimeOmega[#] == 2 &]
Showing 1-5 of 5 results.