A228161 Number triangle associated to Chebyshev polynomials of the second kind.
1, 0, 1, -1, 2, 1, 0, 3, 4, 1, 1, 4, 15, 6, 1, 0, 5, 56, 35, 8, 1, -1, 6, 209, 204, 63, 10, 1, 0, 7, 780, 1189, 496, 99, 12, 1, 1, 8, 2911, 6930, 3905, 980, 143, 14, 1, 0, 9, 10864, 40391, 30744, 9701, 1704, 195, 16, 1, -1, 10, 40545, 235416, 242047, 96030, 20305, 2716, 255, 18, 1
Offset: 0
Examples
Triangle begins: 1, 0, 1, -1, 2, 1, 0, 3, 4, 1, 1, 4, 15, 6, 1, 0, 5, 56, 35, 8, 1, ...
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
- Wikipedia, Chebyshev polynomials
Crossrefs
Programs
-
Mathematica
nn = 10; Flatten[Table[ChebyshevU[i - j, j], {i, 0, nn}, {j, 0, i}]] (* T. D. Noe, Aug 16 2013 *)
Formula
The polynomials can be computed with U_{n+1}(x) = 2*x*U_n(x) - U_{n-1}(x), U_{n+1}(x) = ((U_n(x))^2-1)/U_{n-1}(x), where in each case U_0(x) = 1; U_1(x) = 2*x.
Extensions
More terms from Michel Marcus, Feb 24 2025
Comments