cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131089 a(n) = Sum_{d|n} (2 - mu(d)).

Original entry on oeis.org

1, 4, 4, 6, 4, 8, 4, 8, 6, 8, 4, 12, 4, 8, 8, 10, 4, 12, 4, 12, 8, 8, 4, 16, 6, 8, 8, 12, 4, 16, 4, 12, 8, 8, 8, 18, 4, 8, 8, 16, 4, 16, 4, 12, 12, 8, 4, 20, 6, 12, 8, 12, 4, 16, 8, 16, 8, 8, 4, 24, 4, 8, 12, 14, 8, 16, 4, 12, 8, 16, 4, 24, 4, 8, 12, 12, 8, 16
Offset: 1

Views

Author

Gary W. Adamson, Jun 14 2007

Keywords

Comments

Apart from the first term the same as A062011. - Andrew Howroyd, Aug 09 2018

Examples

			a(4) = 6 = (2 + 3 + 0 + 1), row 4 of A131088.
		

Crossrefs

Row sums of triangle A131088.

Programs

  • Magma
    [1] cat [2*NumberOfDivisors(n) : n in [2..100] ]; // Vincenzo Librandi, Aug 10 2018
  • Mathematica
    Join[{1}, Table[2 DivisorSigma[0, n], {n, 100}]] (* Vincenzo Librandi, Aug 10 2018 *)
  • PARI
    a(n)={2*numdiv(n) - (n==1)} \\ Andrew Howroyd, Aug 09 2018
    

Formula

a(n) = 2*tau(n) = A062011(n) for n > 1. - Andrew Howroyd, Aug 09 2018
Inverse Moebius transform of A228483.

Extensions

Name changed and terms a(10) and beyond from Andrew Howroyd, Aug 09 2018

A255369 a(n) = (sigma(n)-n-1)*(2-mu(n)), where sigma(n) is the sum of the divisors of n and mu(n) is the Möbius function.

Original entry on oeis.org

-1, 0, 0, 4, 0, 5, 0, 12, 6, 7, 0, 30, 0, 9, 8, 28, 0, 40, 0, 42, 10, 13, 0, 70, 10, 15, 24, 54, 0, 123, 0, 60, 14, 19, 12, 108, 0, 21, 16, 98, 0, 159, 0, 78, 64, 25, 0, 150, 14, 84, 20, 90, 0, 130, 16, 126, 22, 31, 0, 214, 0, 33, 80, 124, 18, 231, 0, 114
Offset: 1

Views

Author

Wesley Ivan Hurt, May 04 2015

Keywords

Comments

a(n) = 0 if and only if n is prime. If n is semiprime, then a(n) = sopfr(n).

Crossrefs

Cf. A000203 (sigma), A008683 (Möbius function), A001414 (sopfr).
Cf. A048050 (Chowla's function), A228483 (2-mu(n)).

Programs

  • Magma
    [(SumOfDivisors(n)-n-1)*(2-MoebiusMu(n)): n in [1..80]]; // Vincenzo Librandi, May 05 2015
    
  • Maple
    with(numtheory): a:=n->(sigma(n)-n-1)*(2-mobius(n)): seq(a(n), n=1..100);
  • Mathematica
    Table[(DivisorSigma[1, n] - n - 1) (2 - MoebiusMu[n]), {n, 100}]
  • PARI
    a(n)=(sigma(n)-n-1)*(2-moebius(n)) \\ Dana Jacobsen, May 13 2015
  • Perl
    use ntheory ":all"; say +(divisor_sum($)-$-1)*(2-moebius($)) for 1..80;  # _Dana Jacobsen, May 13 2015
    

Formula

a(n) = A048050(n) * A228483(n) for n > 1, a(1) = -1.

Extensions

Formula corrected for case n=1 by Antti Karttunen, Feb 25 2018
Showing 1-2 of 2 results.