cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228705 Expansion of (1-2*x+4*x^2-2*x^3+x^4)/((1-x)^4*(1+x^2)^2).

Original entry on oeis.org

1, 2, 4, 10, 19, 28, 40, 60, 85, 110, 140, 182, 231, 280, 336, 408, 489, 570, 660, 770, 891, 1012, 1144, 1300, 1469, 1638, 1820, 2030, 2255, 2480, 2720, 2992, 3281, 3570, 3876, 4218, 4579, 4940, 5320, 5740, 6181, 6622, 7084, 7590, 8119, 8648, 9200, 9800, 10425
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2013

Keywords

Comments

Number of n-element subsets of [n+3] having an even sum. a(3) = 10: {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {2,4,6}, {3,4,5}, {3,5,6}. - Alois P. Heinz, Feb 04 2017
A159914, which is half the number of (n-3)-element subsets of {1..n} having an odd sum, satisfies the same recurrence relation. However, a simple relation between a(n) and A159914(n) is not obvious. - M. F. Hasler, Jun 22 2018

Crossrefs

Third lower diagonal of A282011.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1-2*x+4*x^2-2*x^3+x^4)/((1-x)^4*(1+x^2)^2)); // Vincenzo Librandi, Sep 07 2013
  • Mathematica
    CoefficientList[Series[(1 - 2 x + 4 x^2 - 2 x^3 + x^4) / ((1 - x)^4 (1 + x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 07 2013 *)
    LinearRecurrence[{4,-8,12,-14,12,-8,4,-1},{1,2,4,10,19,28,40,60},50] (* Harvey P. Dale, Apr 10 2014 *)

Formula

a(n) = (n+2)*(2*(n+1)*(n+3)+3*(1+(-1)^n)*i^(n*(n+1)))/24, where i=sqrt(-1). [Bruno Berselli, Sep 07 2013]
a(0)=1, a(1)=2, a(2)=4, a(3)=10, a(4)=19, a(5)=28, a(6)=40, a(7)=60, a(n)=4*a(n-1)-8*a(n-2)+12*a(n-3)-14*a(n-4)+12*a(n-5)-8*a(n-6)+ 4*a(n-7)- a(n-8). - Harvey P. Dale, Apr 10 2014