cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228767 Second bisection of the inverse binomial transform of the rational sequence with e.g.f. (x/2)*(exp(-x)+1)/(exp(x)-1).

Original entry on oeis.org

-2, -9, -45, -231, -1161, -5643, -26637, -122895, -557073, -2490387, -11010069, -48234519, -209715225, -905969691, -3892314141, -16642998303, -70866960417, -300647710755, -1271310319653, -5360119185447, -22539988369449, -94557999988779, -395824185999405
Offset: 1

Views

Author

Michel Marcus, following a suggestion of Paul Curtz, Sep 03 2013

Keywords

Comments

The sequence to be transformed is A176328/A176591, its inverse binomial transform begins: 1, -2, 25/6, -9, 599/30, -45, 4285/42, -231, 15599/30, -1161, 169625/66, -5643, 33578309/2730, ...
Its first bisection is constituted of fractional numbers, with denominators A176591, whereas this bisection is constituted of integers only.
It appears that a(1) = -2 and a(n) = -1 * A005408(n-1) * A087289(n-2) for n>1.

Programs

  • PARI
    fr(n) = if (n==0, 1, (-1)^n*(subst(bernpol(n), x, 1) + subst(bernpol(n), x, 2))/2);
    ibtfr(n) = sum(k = 0, n, (-1)^(n-k)*binomial(n, k) * fr(k));
    lista(nn) = {forstep(n=1, nn, 2, print1(ibtfr(n), ", "););} \\ Michel Marcus, Sep 03 2013

Formula

Conjecture: G.f. -x*(2-11*x+21*x^2-2*x^3+8*x^4)/((1-x)^2*(1-4*x)^2). [Bruno Berselli, Sep 03 2013]
Conjecture: a(n) = (8+4^n)*(1-2*n)/8 for n>1, a(1)=-2. [Bruno Berselli, Sep 03 2013]