cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228827 Numerators of the first bisection of the inverse binomial transform of the rational sequence with e.g.f. (x/2)*(exp(-x)+1)/(exp(x)-1).

Original entry on oeis.org

1, 25, 599, 4285, 15599, 169625, 33578309, 344155, 133697983, 941417335, 1729982389, 3184334285, 274574499509, 2625798955, 1611022490371, 123951819730625, 9814145542783, 3453861186955, -25128299959971711973, 2945661954537595, -260933954573210488051
Offset: 0

Views

Author

Paul Curtz & Michel Marcus, Sep 06 2013

Keywords

Comments

The sequence to be transformed is A176328/A176591, its inverse binomial transform begins: 1, -2, 25/6, -9, 599/30, -45, 4285/42, -231, 15599/30, -1161, 169625/66, -5643, 33578309/2730, ...
It appears that a(n) - A000367(n) is a multiple of A002445(n), and the quotients are 0, 4, 20, 102, 520, 2570, 12300, ...

Crossrefs

Cf. A228767 (other bisection).

Programs

  • PARI
    fr(n) = {default(seriesprecision, n+1); egf = (x/2)*(exp(-x)+1)/(exp(x)-1);(n)!* polcoeff(egf, n);}
    ibtfr(n) = sum(k = 0, n, (-1)^(n-k)*binomial(n, k) * fr(k));
    lista(nn) = {forstep(n = 0, nn, 2, print1(numerator(ibtfr(n)), ", "););} \\ Michel Marcus, Sep 06 2013

A227978 a(0)=1, a(1)=2; for n>1, a(n) = n*(2^n+4)/4.

Original entry on oeis.org

1, 2, 4, 9, 20, 45, 102, 231, 520, 1161, 2570, 5643, 12300, 26637, 57358, 122895, 262160, 557073, 1179666, 2490387, 5242900, 11010069, 23068694, 48234519, 100663320, 209715225, 436207642, 905969691, 1879048220, 3892314141, 8053063710, 16642998303
Offset: 0

Views

Author

Paul Curtz, Oct 07 2013

Keywords

Comments

The inverse binomial transform of A176328/A176591 (see Comments field in A228827) begins: 1, -2, 25/6, -9, 599/30, -45, 4285/42, -231, 15599/30, -1161, 169625/66, ... Consider these values without sign and the fractions rounded to the nearest integer, the sequence lists the resulting numbers.
Differences table of a(n):
1, 2, 4, 9, 20, 45, 102, 231, 520, 1161, ...
1, 2, 5, 11, 25, 57, 129, 289, 641, 1409, ... After 2: 2^m*(m+4)+1.
1, 3, 6, 14, 32, 72, 160, 352, 768, 1664, ... A078836 (after 3).
2, 3, 8, 18, 40, 88, 192, 416, 896, 1920, ... A129955.
1, 5, 10, 22, 48, 104, 224, 480, 1024, 2176, ... A079861 (after 5).
4, 5, 12, 26, 56, 120, 256, 544, 1152, 2432, ... After 5: 2^m*(m+12).
1, 7, 14, 30, 64, 136, 288, 608, 1280, 2688, ... After 7: 2^m*(m+14).
6, 7, 16, 34, 72, 152, 320, 672, 1408, 2944, ..., etc.
(n-1)*a(n)-n*a(n-1) = A001788(n-1) for n>1. [Bruno Berselli, Oct 11 2013]

Crossrefs

Programs

  • Magma
    [1,2] cat [n*(2^n+4)/4: n in [2..40]]; // Bruno Berselli, Oct 11 2013
    
  • Mathematica
    Join[{1, 2}, Table[n (2^n + 4)/4, {n, 2, 40}]] (* Bruno Berselli, Oct 11 2013 *)
  • PARI
    a(n) = if (n == 0, 1, if (n == 1, 2, n*(2^n+4)/4)); \\ Michel Marcus, Oct 11 2013

Formula

a(2n+2) = A229135(n+1); a(2n-1) = -A228767(n) for n>0.
a(n) = 6*a(n-1) -13*a(n-2) +12*a(n-3) -4*a(n-4) for n>5.
G.f.: (1-4*x+5*x^2-x^3-2*x^4+2*x^5)/((1-x)^2*(1-2*x)^2). - Colin Barker, Oct 09 2013

Extensions

More terms from Colin Barker, Oct 09 2013

A141519 Period 10: repeat [-1, 1, -3, 7, -5, 3, -7, 9, -9, 5].

Original entry on oeis.org

-1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3, 7, -5, 3, -7, 9, -9, 5, -1, 1, -3
Offset: 0

Views

Author

Paul Curtz, Aug 11 2008

Keywords

Comments

It appears that abs(a(n)) = abs(A001469(n+1)) mod 10.
It also appears that abs(a(n)) = abs(A228767(n+4)) mod 10. - Michel Marcus, Sep 04 2013

Crossrefs

Programs

  • Mathematica
    PadRight[{},120,{-1,1,-3,7,-5,3,-7,9,-9,5}] (* Harvey P. Dale, Mar 03 2023 *)

Formula

G.f.: ( -1-3*x^2+4*x^3+2*x^5-5*x^6-5*x^8-x^4+4*x^7 ) / ( (1+x)*(1+x+x^2+x^3+x^4)*(x^4-x^3+x^2-x+1) ). - R. J. Mathar, Oct 08 2011
a(n) = - Sum_{k=1..9} a(n-k). - Wesley Ivan Hurt, May 27 2021
Showing 1-3 of 3 results.