cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228873 a(n) = F(n) * F(n+1) * F(n+2) * F(n+3), the product of four consecutive Fibonacci numbers, A000045.

Original entry on oeis.org

6, 30, 240, 1560, 10920, 74256, 510510, 3495030, 23965920, 164237040, 1125770256, 7715953440, 52886430870, 362487682830, 2484530961360, 17029219589256, 116720030923320, 800010932051760, 5483356663145790, 37583485265670630, 257601041359736256
Offset: 1

Views

Author

T. D. Noe, Sep 24 2013

Keywords

Comments

Mohanty and Mohanty prove in Corollary 2.5 that these numbers are Pythagorean. The number a(n) is primitive Pythagorean if F(n) and F(n+1) have opposite parity. Every third number, starting at a(1) = 6, is not primitive Pythagorean.
Since a(n) = F(n+1)*F(n+2)*(F(n+2)^2 - F(n+1)^2), a(n) is in A073120. - Robert Israel, Apr 06 2015

Crossrefs

Cf. A000045 (Fibonacci numbers), A228874 (similar sequence for Lucas numbers).
Cf. A009112 (Pythagorean numbers), A024365, A073120.

Programs

  • Magma
    [Fibonacci(n)*Fibonacci(n+1)*Fibonacci(n+2)*Fibonacci(n+3): n in [1..30]]; // Vincenzo Librandi, Oct 04 2013
  • Maple
    seq(mul(combinat:-fibonacci(i),i=n..n+3),n=1..30); # Robert Israel, Apr 06 2015
  • Mathematica
    Table[Fibonacci[n] Fibonacci[n+1] Fibonacci[n+2] Fibonacci[n+3], {n, 25}]
    CoefficientList[Series[-6/((x - 1) (x^2 + 3 x + 1) (x^2 - 7 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2013 *)
    Times@@@Partition[Fibonacci[Range[30]],4,1] (* Harvey P. Dale, Dec 23 2013 *)
    LinearRecurrence[{5,15,-15,-5,1},{6,30,240,1560,10920},30] (* Harvey P. Dale, Jul 24 2021 *)

Formula

G.f.: -6*x/((x-1)*(x^2+3*x+1)*(x^2-7*x+1)). - Alois P. Heinz, Oct 02 2013
a(n+5) = 5*a(n+4)+15*a(n+3)-15*a(n+2)-5*a(n+1)+a(n). - Robert Israel, Apr 06 2015
a(n) = 2 * A000217(A059840(n+2)). - Diego Rattaggi, Jan 27 2021
Sum_{n>=1} 1/a(n) = (12-5*sqrt(5))/4. - Diego Rattaggi, Aug 16 2021
a(n) = 3 * Sum_{k=1..n} 2^(n-k)*F(k)^2*F(k+1)*F(k+2) (Seiffert, 2006). - Amiram Eldar, Jan 11 2022