A228958 a(n) = 1*2 + 3*4 + 5*6 + 7*8 + 9*10 + 11*12 + 13*14 + ... + (up to n).
1, 2, 5, 14, 19, 44, 51, 100, 109, 190, 201, 322, 335, 504, 519, 744, 761, 1050, 1069, 1430, 1451, 1892, 1915, 2444, 2469, 3094, 3121, 3850, 3879, 4720, 4751, 5712, 5745, 6834, 6869, 8094, 8131, 9500, 9539, 11060, 11101, 12782, 12825, 14674, 14719, 16744
Offset: 1
Examples
1 = 1 1*2 = 2 1*2 + 3 = 5 1*2 + 3*4 = 14 1*2 + 3*4 + 5 = 19 1*2 + 3*4 + 5*6 = 44 1*2 + 3*4 + 5*6 + 7 = 51 1*2 + 3*4 + 5*6 + 7*8 = 100 1*2 + 3*4 + 5*6 + 7*8 + 9 = 109 1*2 + 3*4 + 5*6 + 7*8 + 9*10 = 190 ...
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
Crossrefs
Programs
-
Magma
[(1/12)*(2*n^3+4*n+3/2+(3*n^2-6*n-3/2)*(-1)^n): n in [1..50]]; // Vincenzo Librandi, Sep 11 2018
-
Mathematica
a[n_?OddQ] := (2*n^3-3*n^2+10*n+3)/12; a[n_?EvenQ] := n*(n+2)*(2*n-1)/12; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Sep 10 2013 *) CoefficientList[Series[x(x^5 - x^4 + 6*x^3 + x + 1)/((x-1)^4*(x+1)^3), {x, 0, 40}], x] (* Stefano Spezia, Sep 23 2018 *) LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,2,5,14,19,44,51},50] (* Harvey P. Dale, Mar 11 2023 *)
-
PARI
Vec( x*(x^5 - x^4 + 6*x^3 + x + 1)/((x-1)^4*(x+1)^3) + O(x^66) ) \\ Joerg Arndt, Sep 17 2013
Formula
a(n) = (1/12)*(2*n^3+4*n+3/2+(3*n^2-6*n-3/2)*(-1)^n). [based on Alcover program]
G.f.: x*(x^5 - x^4 + 6*x^3 + x + 1)/((x-1)^4*(x+1)^3). [Joerg Arndt, Sep 13 2013]
E.g.f.: (x*(9 + 9*x + 2*x^2)*cosh(x) + (3 + 3*x + 3*x^2 + 2*x^3)*sinh(x))/12. - Stefano Spezia, Apr 18 2023
Extensions
Definition corrected by Ivan Panchenko, Dec 02 2013
Comments