cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166734 Determinant of the adjacency matrix of the n-cube graph Q_n.

Original entry on oeis.org

0, -1, 0, 9, 0, 1476225, 0, 32724184981958652351324462890625, 0
Offset: 0

Views

Author

Franz Vrabec, Oct 20 2009

Keywords

Examples

			a(3) = (3^1)*(1^3)*((-1)^3)*((-3)^1) = 3*1*(-1)*(-3) = 9.
		

References

  • N. Biggs, Algebraic Graph Theory, Cambridge Univ. Press 1974, p. 145.

Crossrefs

Cf. A229333.

Programs

  • Maple
    a:= n-> mul((n-2*j)^binomial(n, j), j=0..n):
    seq(a(n), n=0..9);  # Alois P. Heinz, Jun 12 2022
  • PARI
    a(n) = prod(j=0, n, (n-2*j)^binomial(n,j)); \\ Michel Marcus, Feb 08 2020

Formula

a(n) = Product_{j=0..n} (n-2j)^binomial(n,j).

A229334 Product of numbers of elements of nonempty subsets of divisors of n.

Original entry on oeis.org

1, 2, 2, 24, 2, 20736, 2, 20736, 24, 20736, 2, 11501279977342425366528000000, 2, 20736, 20736, 309586821120, 2, 11501279977342425366528000000, 2, 11501279977342425366528000000, 20736, 20736, 2
Offset: 1

Views

Author

Jaroslav Krizek, Sep 30 2013

Keywords

Comments

Number of nonempty subsets of divisors of n = A100587(n).
Also product of sizes of all the subsets of set of divisors of n.

Examples

			For n = 4; divisors of 4: {1, 2, 4}; nonempty subsets of divisors of n: {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}; product of numbers of elements of subsets = 1*1*1*2*2*2*3 = 24.
For n = 4; tau(4) = 3; a(4) = [1^(3!/((3-1)!*1!))] * [2^(3!/((3-2)!*2!))] * [3^(3!/((3-3)!*3!))] = 1^3 * 2^3 * 3^1 = 24.
		

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Rest[Length /@ Subsets[Divisors[n]]], {n, 23}] (* T. D. Noe, Oct 01 2013 *)

Formula

a(n) = product[k=1..tau(n)] k^C(tau(n),k) = product[k=1..tau(n)] k^(tau(n)!/((tau(n)-k)!*k!)).

A365447 Number of nonempty choice functions on a set of n alternatives.

Original entry on oeis.org

1, 3, 189, 26254935, 392654823152462915625, 28032331438680332717218961936012273854096893310546875
Offset: 1

Views

Author

Dmitry I. Ignatov, Oct 03 2023

Keywords

Comments

Number of choice functions f:2^A\{{}}->2^A\{{}} where A is an n-element set of variants such that f(X) is a nonempty subset of any nonempty X in 2^A (here 2^A denotes the power set of A).

Examples

			a(1) = 1 since 2^{1} = {{}, {1}} and there exists only one function f:2^{1}/{{}}->2^{1}/{{}} satisfying f(X) is a nonempty subset of any nonempty X in 2^A, i.e., f({1})={1}.
		

References

  • F. Aleskerov, D. Bouyssou, and B. Monjardet, Utility, Maximization, Choice and Preference, Springer, 2007, pp. 28-31.

Crossrefs

Programs

  • Mathematica
    a[n_] := Product[(2^k - 1)^Binomial[n, k], {k, 1, n}]; Array[a, 6] (* Amiram Eldar, Oct 03 2023 *)

Formula

a(n) = Product_{k=1..n} (2^k-1)^binomial(n, k).
log_2 a(n) = n*2^(n-1) + O(2^n/sqrt(n)).
Showing 1-3 of 3 results.