cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230462 Numbers congruent to {1, 11, 13, 17, 19, or 29} mod 30.

Original entry on oeis.org

1, 11, 13, 17, 19, 29, 31, 41, 43, 47, 49, 59, 61, 71, 73, 77, 79, 89, 91, 101, 103, 107, 109, 119, 121, 131, 133, 137, 139, 149, 151, 161, 163, 167, 169, 179, 181, 191, 193, 197, 199, 209, 211, 221, 223, 227, 229, 239, 241, 251, 253, 257, 259, 269
Offset: 1

Views

Author

Gary Croft, Oct 20 2013

Keywords

Comments

Reduces sieving for all twin primes (A001097) except (3,5) and (5,7) to 6/30 or 20% of natural numbers.
This is subset of natural numbers not divisible by 2, 3 or 5 (A007775).
Also A128464(n) and A128464(n)+2 interleaved, with a(n) = 1. - Peter Bala, Oct 28 2013
a(2)..a(10) form a block of 9 primes {11, 13, 17, 19, 29, 31, 41, 43, 47}. Up to 3*10^10 there is only one such block which includes 11 primes: {18873497, 18873499, 18873509, 18873511, 18873521, 18873523, 18873527, 18873529, 18873539, 18873541, 18873551}. Do larger such blocks exist? (None found up to 10^11.) - Mikk Heidemaa, Dec 22 2017

Crossrefs

Programs

  • Magma
    [n : n in [0..400] | n mod 30 in [1, 11, 13, 17, 19, 29]]; // Wesley Ivan Hurt, Jul 22 2016
  • Maple
    A230462:=n->30*floor(n/6)+[1, 11, 13, 17, 19, 29][(n mod 6)+1]: seq(A230462(n), n=0..100); # Wesley Ivan Hurt, Jul 22 2016
  • Mathematica
    LinearRecurrence[{1,0,0,0,0,1,-1},{1,11,13,17,19,29,31},60] (* Harvey P. Dale, Dec 01 2015 *)
    ParallelCombine[Select[#, MemberQ[{1, 11, 13, 17, 19, 29}, Mod[#, 30]] &] &, Range[10^4]] (* Mikk Heidemaa, Dec 12 2017 *)
    CoefficientList[ Series[(1 + 10x + 2x^2 + 4x^3 + 2x^4 + 10x^5 + x^6)/((-1 + x)^2 (1 + x + x^2 + x^3 + x^4 + x^5)), {x, 0, 60}], x] (* Robert G. Wilson v, Jan 09 2018 *)
  • PARI
    a(n)=n\6*30+[-1,1,11,13,17,19][n%6+1] \\ Charles R Greathouse IV, Oct 29 2013
    
  • PARI
    first(n) = Vec(x*(1 + 10*x + 2*x^2 + 4*x^3 + 2*x^4 + 10*x^5 + x^6)/((1 + x)*(1 + x + x^2)*(x^2 - x + 1)*(x - 1)^2) + O(x^(n+1))) \\ Iain Fox, Dec 29 2017
    

Formula

G.f.: x*(1+10*x+2*x^2+4*x^3+2*x^4+10*x^5+x^6) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Jul 07 2015
From Wesley Ivan Hurt, Jul 22 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7; a(n) = a(n-6) + 30 for n>6.
a(n) = (30*n - 15 - 6*cos(n*Pi/3) + 6*cos(2*n*Pi/3) + 9*cos(n*Pi) + 6*sqrt(3)*sin(n*Pi/3) - 2*sqrt(3)*sin(2*n*Pi/3))/6.
a(6k) = 30k-1, a(6k-1) = 30k-11, a(6k-2) = 30k-13, a(6k-3) = 30k-17, a(6k-4) = 30k-19, a(6k-5) = 30k-29. (End)
a(n) = 5*n + ceiling(7/79 - ((((14654/4883)^n mod 6) mod 5) + n mod 3 + 1) mod 7). - Mikk Heidemaa, Dec 13 2017
a(n + 6) = a(n) + 30. - David A. Corneth, Jan 15 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = (cot(Pi/30) - sec(2*Pi/15) * tan(Pi/15)) * Pi/30. - Amiram Eldar, Jul 29 2024

Extensions

New name and initial term from Omar E. Pol, Oct 27 2013