cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A230623 Values of y such that x^2 + y^2 = 17^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

4, 15, 52, 240, 1121, 4888, 20047, 77280, 277441, 1093425, 5279468, 23647519, 99429196, 393425745, 1457109628, 4968639359, 24553864319, 113193708472, 488133974353, 1980778750800, 7547952442399, 26710380775592, 112605054449252
Offset: 1

Views

Author

Colin Barker, Oct 26 2013

Keywords

Comments

The corresponding x-values are in A230622.

Examples

			a(2)=15 because 8^2 + 15^2 = 289 = 17^2.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[17^n, 2, 2], CoprimeQ@@#&][[1, 2]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)

A230710 Values of x such that x^2 + y^2 = 5^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

1, 3, 2, 7, 38, 44, 29, 336, 718, 237, 2642, 10296, 8839, 16124, 108691, 164833, 24478, 922077, 2521451, 1476984, 6699319, 34182196, 35553398, 32125393, 306268562, 597551756, 130656229, 2465133864, 8701963882, 6890111163, 15949374758, 98248054847, 135250416961
Offset: 1

Views

Author

Colin Barker, Oct 28 2013

Keywords

Comments

The corresponding y-values are in A230711.
For all non-coprime solutions (x,y) to the equation x^2 + y^2 = p^n, x and y are both divisible by the prime p.
Using de Moivre's Theorem (in essence), define (c,d)*(e,f) as (ce-df,cf+de). Then a(n) = min{|u(n)|, |v(n)|}, where (u(n),v(n)) = (2,1)^n = (2,1)*(2,1)^[n-1]. Proof: It can be readily seen that u^2(n) + v^2(n) = 5^n. To show that u(n) and v(n) are relatively prime, assume that x,y are relatively prime. Then (2,1)*(x,y) = (2x-y, x+2y). If a prime p were to divide both of 2x-y and x+2y, then p would divide 5y, so p=5. Now suppose x == 2 (mod 5) and y == 1 (mod 5). It can be seen that 2x-y == -2 (mod 5) and x+2y == -1 (mod 5). The reverse also holds. Because u(1)=2 and v(1)=1, the result follows inductively. - Richard Peterson, May 21 2021

Examples

			a(4)=7 because 7^2 + 24^2 = 625 = 5^4.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[5^n, 2, 2], CoprimeQ[#[[1]], #[[2]]] &][[1,1]], {n, 33}] (* T. D. Noe, Nov 04 2013 *)

Extensions

Typo in data fixed by Colin Barker, Nov 02 2013

A230644 Values of x such that x^2 + y^2 = 29^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

2, 20, 65, 41, 1475, 15939, 60422, 68880, 1063438, 12631900, 55535695, 86719879, 743336365, 9948240141, 50564635018, 96971881440, 496655601122, 7778740572980, 45669244934945, 101577438080201, 308633722311395, 6032082927439779, 40960925870541542
Offset: 1

Views

Author

Colin Barker, Oct 26 2013

Keywords

Comments

The corresponding y-values are in A230645.

Examples

			a(3)=65 because 65^2+142^2=24389=29^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[29^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)

Extensions

Incorrect formula deleted by Colin Barker, Jan 08 2014

A230712 Values of x such that x^2 + y^2 = 37^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

1, 12, 107, 840, 5646, 27755, 124158, 462961, 961686, 5589325, 102654282, 1025046359, 8502347874, 64101459205, 356029844147, 1681548425760, 7005476875681, 21848430755052, 2978524660427, 772649642011800
Offset: 1

Views

Author

Colin Barker, Oct 28 2013

Keywords

Comments

The corresponding y-values are in A230713.

Examples

			a(3)=107 because 107^2+198^2=50653=37^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[37^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)

A230743 Values of x such that x^2 + y^2 = 41^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

4, 9, 115, 720, 2476, 42471, 4765, 1788961, 3780956, 51872200, 310486445, 1142532559, 18483128564, 4205436520, 799862636324, 1584162310079, 23384002313285, 133802323596440, 526151093402156, 8041209044472401, 2783579583540395, 357525366658772391
Offset: 1

Views

Author

Colin Barker, Oct 29 2013

Keywords

Comments

The corresponding y-values are in A230744.

Examples

			a(3)=115 because 115^2+236^2=68921=41^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[41^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)

A230759 Values of x such that x^2 + y^2 = 53^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

2, 28, 259, 1241, 3647, 14715, 399301, 4810319, 34161842, 146769868, 244200526, 4359995640, 73982566838, 804676166812, 4381447604821, 15981352647839, 8477785985767, 965700694136205, 13070487060661219, 114948480102611400, 541029996598203398
Offset: 1

Views

Author

Colin Barker, Oct 29 2013

Keywords

Comments

The corresponding y-values are in A230760.

Examples

			a(3)=259 because 259^2+286^2=148877=53^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[53^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)

A230841 Values of x such that x^2 + y^2 = 61^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

5, 11, 234, 1320, 9475, 117469, 266286, 9184560, 3302155, 520632300, 1387108806, 23922442439, 154165737965, 933420304380, 13338456688674, 22995028210081, 1026964091673115, 713853567388260, 54078566783400895, 171226928056302601, 2435077776719657394
Offset: 1

Views

Author

Colin Barker, Oct 31 2013

Keywords

Comments

The corresponding y-values are in A230842.

Examples

			a(3)=234 because 234^2+415^2=226981=61^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[61^n, 2, 2], CoprimeQ[#[[1]], #[[2]]] &][[1, 1]], {n, 22}] (* T. D. Noe, Nov 04 2013 *)
    Table[Select[PowersRepresentations[61^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)

Extensions

a(10) and a(20) corrected by Zak Seidov, Nov 02 2013

A230962 Values of x such that x^2 + y^2 = 73^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

3, 48, 296, 721, 10072, 213785, 1958709, 7613760, 21165597, 894454032, 12278087704, 59926173839, 62518379032, 3374316625735, 58552907681096, 416603004343680, 1261259807092797, 10231862403603888, 255781764375436389, 2697529798981443601, 11543491568219853608
Offset: 1

Views

Author

Colin Barker, Nov 02 2013

Keywords

Comments

The corresponding y-values are in A230963.

Examples

			a(3) = 296 because 296^2 + 549^2 = 389017 = 73^3.
		

Crossrefs

Programs

  • Maple
    f:=n ->  min([abs@Re,abs@Im]((3+8*I)^n)):
    map(f, [$1..50]); # Robert Israel, Mar 31 2017
  • Mathematica
    Table[Select[PowersRepresentations[73^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)
    Table[Min[Abs[Re[(3 + 8I)^n]], Abs[Im[(3 + 8I)^n]]], {n, 30}] (* Indranil Ghosh, Mar 31 2017, after formula by Robert Israel *)
  • Python
    from sympy import I, re, im
    print([min(abs(re((3 + 8*I)**n)), abs(im((3 + 8*I)**n))) for n in range(1, 31)]) # Indranil Ghosh, Mar 31 2017, after formula by Robert Israel

Formula

From Robert Israel, Mar 31 2017: (Start)
a(n) = min(abs(Re((3+8i)^n)), abs(Im((3+8i)^n))).
a(n) = abs(Re(3+8i)^n) if and only if 1/4 < frac(n*arctan(8/3)/Pi) < 3/4.
(End)
Showing 1-8 of 8 results.