A232804
Number of perfect matchings in the graph C_6 x C_n.
Original entry on oeis.org
224, 3108, 9922, 90176, 401998, 3113860, 16091936, 114557000, 643041038, 4357599552, 25689719122, 169094614280, 1026275640544, 6640849944580, 40998347400722, 262671237617216, 1637828186763038, 10433179552323108, 65428999765032736, 415409841636546440, 2613799160004664798, 16563343174199239744
Offset: 3
A341533
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin((2*b-1)*Pi/k)^2) ).
Original entry on oeis.org
2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 256, 224, 1156, 2, 200, 722, 2916, 1058, 6728, 2, 478, 2916, 9922, 38416, 5054, 39204, 2, 1156, 10082, 80000, 155682, 527076, 24200, 228488, 2, 2786, 38416, 401998, 2775556, 2540032, 7311616, 115934, 1331716, 2
Offset: 1
Square array begins:
2, 8, 14, 36, 82, 200, ...
2, 36, 50, 256, 722, 2916, ...
2, 200, 224, 2916, 9922, 80000, ...
2, 1156, 1058, 38416, 155682, 2775556, ...
2, 6728, 5054, 527076, 2540032, 105125000, ...
2, 39204, 24200, 7311616, 41934482, 4115479104, ...
-
default(realprecision, 120);
T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin((2*b-1)*Pi/k)^2))));
A230033
Number of perfect matchings in the graph C_7 X C_{2n}.
Original entry on oeis.org
10082, 401998, 19681538, 1034315998, 55820091938, 3044533460992, 166779871224962, 9152970837103102, 502711247500143362, 27619744381029252622, 1517688682641434229698, 83401213534557960429502, 4583249488240161816039552, 251871805990373105011941118, 13841645914590329223808310018, 760670944425011837491619633038
Offset: 2
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 7, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/7)^2)))); \\ Seiichi Manyama, Feb 14 2021
A253678
Number of perfect matchings in the graph C_8 X C_n.
Original entry on oeis.org
1058, 39952, 155682, 3113860, 19681538, 311853312, 2415542018, 33898728836, 294554220578, 3827188349968, 35866638601250, 442299574618756, 4365923647238658, 51942700201804032, 531410627302657538, 6169093269471927940, 64681086501382749218, 738453913359765339152, 7872683691901209561122, 88873260229652630182276
Offset: 3
- S. N. Perepechko, Combinatorial properties of dimer problem on tori (in Russian). Mathematical physics and its applications, The fourth int. conf. Samara, 2014, 280-281.
A341741
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards: number of perfect matchings in the graph C_{2n} x C_k.
Original entry on oeis.org
2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 272, 224, 1156, 2, 200, 722, 3108, 1058, 6728, 2, 478, 3108, 9922, 39952, 5054, 39204, 2, 1156, 10082, 90176, 155682, 537636, 24200, 228488, 2, 2786, 39952, 401998, 3113860, 2540032, 7379216, 115934, 1331716, 2
Offset: 1
Square array begins:
2, 8, 14, 36, 82, 200, ...
2, 36, 50, 272, 722, 3108, ...
2, 200, 224, 3108, 9922, 90176, ...
2, 1156, 1058, 39952, 155682, 3113860, ...
2, 6728, 5054, 537636, 2540032, 114557000, ...
2, 39204, 24200, 7379216, 41934482, 4357599552, ...
Columns 1..12 give
A007395,
A162484(2*n),
A231087,
A220864(2*n),
A231485,
A232804(2*n),
A230033,
A253678(2*n),
A281583,
A281679(2*n),
A308761,
A309018(2*n).
A281583
Number of perfect matchings in the graph C_9 X C_{2n}.
Original entry on oeis.org
140450, 16091936, 2415542018, 400448833106, 69206906601800, 12190695635108354, 2167175327735637122, 387018647188487143424, 69272289588070930561250, 12413316310203106546620386, 2225719417041514241075539592, 399192630631160441128470998546
Offset: 2
- Seiichi Manyama, Table of n, a(n) for n = 2..443
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V.16, No.4, pp.333-361.
- Sergey Perepechko, Generating function, in Maple notation.
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 9, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/9)^2)))); \\ Seiichi Manyama, Feb 14 2021
A281679
Number of perfect matchings in the graph C_10 X C_n.
Original entry on oeis.org
5054, 537636, 2540032, 114557000, 1034315998, 33898728836, 400448833106, 11203604497408, 152849502772958, 3876306765700644, 58099728840105682, 1375359477482867528, 22057225099289357824, 496348449090698237956, 8370856315868909044082, 181385918483215101487880
Offset: 3
- Seiichi Manyama, Table of n, a(n) for n = 3..500
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
- Sergey Perepechko, Generating function, in Maple notation.
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Perfect Matching
- Eric Weisstein's World of Mathematics, Torus Grid Graph
A308761
Number of perfect matchings in the graph C_{11} X C_{2n}.
Original entry on oeis.org
1956242, 643041038, 294554220578, 152849502772958, 83804387156528018, 47217865780262297342, 26990513247252188990402, 15550772782091243971206638, 8999393061535308152171682002, 5221063878050546380074377019392
Offset: 2
- Seiichi Manyama, Table of n, a(n) for n = 2..361
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
- S. N. Perepechko, Counting Near-Perfect Matchings on C_m × C_n Tori of Odd Order in the Maple System, Programming and Computer Software, 45(2019), 65-72.
- Sergey Perepechko, Generating function in Maple notation.
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 11, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/11)^2)))); \\ Seiichi Manyama, Feb 14 2021
A309018
Number of perfect matchings in the graph C_{12} X C_n.
Original entry on oeis.org
24200, 7379216, 41934482, 4357599552, 55820091938, 3827188349968, 69206906601800, 3876306765700644, 83804387156528018, 4161957566985310208, 100644292294423977842, 4601436044608986037284, 120511830300023778605000, 5179981855242249681088528, 144148769049390803580105218
Offset: 3
- Seiichi Manyama, Table of n, a(n) for n = 3..500
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
- Sergey Perepechko, Generating function in Maple notation.
A341493
a(n) = ( Product_{j=1..n} Product_{k=1..n+1} (4*sin((2*j-1)*Pi/n)^2 + 4*sin((2*k-1)*Pi/(n+1))^2) )^(1/4).
Original entry on oeis.org
1, 2, 14, 50, 722, 9922, 401998, 19681538, 2415542018, 400448833106, 152849502772958, 83804387156528018, 100644292294423977842, 180483873668860889130642, 686161117968330536875295134, 4001215836806010384390623471618
Offset: 0
Cf.
A162484,
A220864,
A230033,
A231087,
A231485,
A232804,
A253678,
A281583,
A281679,
A308761,
A309018,
A335586.
-
Table[Product[4*Sin[(2*j - 1)*Pi/n]^2 + 4*Sin[(2*k - 1)*Pi/(n+1)]^2, {k, 1, n+1}, {j, 1, n}]^(1/4), {n, 0, 15}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
-
default(realprecision, 120);
a(n) = round(prod(j=1, n, prod(k=1, n+1, 4*sin((2*j-1)*Pi/n)^2+4*sin((2*k-1)*Pi/(n+1))^2))^(1/4));
Showing 1-10 of 10 results.
Comments