cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A122868 Expansion of 1/sqrt(1-6x-3x^2).

Original entry on oeis.org

1, 3, 15, 81, 459, 2673, 15849, 95175, 576963, 3523257, 21640365, 133549155, 827418645, 5143397535, 32063180535, 200367960201, 1254816463923, 7873205412825, 49482344889261, 311457546052659, 1963051327342449, 12387750763156227, 78258731003169435
Offset: 0

Views

Author

Paul Barry, Sep 16 2006

Keywords

Comments

Binomial transform of A084609. Central coefficients of (1+3x+3x^2)^n.
The number of free (3,3)-Motzkin paths of length n, where free (k,t)-Motzkin paths are the free Motzkin paths with level steps of weight k and down steps of weight t. For example a(2)=15 because there are 9, 3, 3 paths consisting of two level steps, UD's and DU's, respectively. - Carol J. Wang (cerlined7(AT)hotmail.com), Nov 27 2007
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 07 2022

Crossrefs

Top row of array in A232973.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`([x, y]=[0$2], 1,
          `if`(x>0, add(b(x-1, y+j), j=-1..1), 0)+
          `if`(y>0, b(x, y-1), 0)+`if`(y<0, b(x, y+1), 0))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 21 2021
    r := (-3)^(1/2): seq(simplify(r^n*LegendreP(n, -r)), n=0..10); # Mark van Hoeij, Nov 13 2022
  • Mathematica
    CoefficientList[Series[1/Sqrt[1-6*x-3*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
  • Maxima
    a(n):=coeff(expand((1+3*x+3*x^2)^n),x,n);
    makelist(a(n),n,0,12);
    
  • PARI
    my(x = 'x + O('x^30)); Vec(1/sqrt(1-6*x-3*x^2)) \\ Michel Marcus, Jan 29 2016

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(2k,k)*3^(n-k).
E.g.f. : exp(3x)*Bessel_I(0,2*sqrt(3)x).
D-finite with recurrence: n*a(n) + 3*(1-2*n)*a(n-1) + 3*(1-n)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011 [proved in Belbachir et al. (see Table 1)]
a(n) ~ (1+sqrt(3))*(3+2*sqrt(3))^n/(2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 19 2012
a(n) = (-3)^(n/2)*LegendreP(n, -(-3)^(1/2)). - Mark van Hoeij, Nov 13 2022

A232969 The sequence S(n,n) that enumerates a certain class of lattice paths from (0,0) to (n,n).

Original entry on oeis.org

1, 6, 60, 675, 7992, 97416, 1209951, 15227190, 193507056, 2477564820, 31910429520, 412987306320, 5366341375695, 69965422235442, 914825583252396, 11991475839917115, 157524763370404320, 2073261181622482080, 27333449595845251524, 360903785815145617992
Offset: 0

Views

Author

N. J. A. Sloane, Dec 05 2013

Keywords

Comments

See Dziemianczuk for precise definition.

Crossrefs

Leading column of array in A232973.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`([x, y]=[0$2], 1,
          `if`(x>0, add(b(x-1, y+j), j=-1..1), 0)+
          `if`(y>0, b(x, y-1), 0)+`if`(y<0, b(x, y+1), 0))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..22);  # Alois P. Heinz, Sep 21 2021
  • Mathematica
    Table[Function[k, Sum[Sum[Binomial[k, j] Binomial[j, i - j] Binomial[2 k + n - i, k], {j, 0, i}], {i, 0, n + k}]]@ n, {n, 0, 19}] (* Michael De Vlieger, Jul 22 2017 *)
  • PARI
    \\ Dziemianczuk, Proposition 1
    S(n,k)=sum(i=0,n+k,sum(j=0,i,binomial(k,j)*binomial(j,i-j)*binomial(2*k+n-i,k)));
    vector(20,x,x--;S(x,x)) \\ Lars Blomberg, Jul 20 2017

Extensions

a(8)-a(19) from Lars Blomberg, Jul 20 2017
Showing 1-2 of 2 results.