A307910
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 8, 15, 24, 35, 48, ...
0, 7, 32, 81, 160, 275, 432, ...
0, 19, 136, 459, 1120, 2275, 4104, ...
0, 51, 592, 2673, 8064, 19375, 40176, ...
0, 141, 2624, 15849, 59136, 168125, 400896, ...
0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
-
A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)
A220178
Triangle where the g.f. for row n equals d^n/dx^n (1+x+x^2)^n / n! for n>=0, as read by rows.
Original entry on oeis.org
1, 1, 2, 3, 6, 6, 7, 24, 30, 20, 19, 80, 150, 140, 70, 51, 270, 630, 840, 630, 252, 141, 882, 2520, 4200, 4410, 2772, 924, 393, 2856, 9576, 19320, 25410, 22176, 12012, 3432, 1107, 9144, 35280, 83160, 131670, 144144, 108108, 51480, 12870, 3139, 29070, 126720, 341880, 630630, 828828, 780780, 514800, 218790, 48620
Offset: 0
Triangle begins:
1;
1, 2;
3, 6, 6;
7, 24, 30, 20;
19, 80, 150, 140, 70;
51, 270, 630, 840, 630, 252;
141, 882, 2520, 4200, 4410, 2772, 924;
393, 2856, 9576, 19320, 25410, 22176, 12012, 3432;
1107, 9144, 35280, 83160, 131670, 144144, 108108, 51480, 12870; ...
The g.f. for column k>=0 equals the central binomial coefficient C(2*k,k) times x^k*y^k*G(x)^(2*k+1) where G(x) = 1/sqrt(1-2*x-3*x^2) is the g.f. of the central trinomial coefficients A002426.
The g.f. for row n is d^n/dx^n (1+x+x^2)^n/n!, which begins:
n=0: 1;
n=1: 1 + 2*x;
n=2: 3 + 6*x + 6*x^2;
n=3: 7 + 24*x + 30*x^2 + 20*x^3;
n=4: 19 + 80*x + 150*x^2 + 140*x^3 + 70*x^4;
n=5: 51 + 270*x + 630*x^2 + 840*x^3 + 630*x^4 + 252*x^5;
n=6: 141 + 882*x + 2520*x^2 + 4200*x^3 + 4410*x^4 + 2772*x^5 + 924*x^6; ...
-
Flatten@Table[CoefficientList[D[(1 + x + x^2)^n/n!, {x, n}], x], {n, 0, 9}] (* Ivan Neretin, Jun 22 2019 *)
-
{T(n,k)=polcoeff(polcoeff(1/sqrt(1-2*x-3*x^2 - 4*x*y +x*O(x^n)+y*O(y^k)),n,x),k,y)}
for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
-
row(n) = my(p=(1+x+x^2)^n / n!); for (k=1, n, p = deriv(p)); Vecrev(p); \\ Michel Marcus, Jun 22 2019
A225439
Expansion of 3*x/((1-(1-9*x)^(1/3))*(1-9*x)^(2/3)).
Original entry on oeis.org
1, 3, 21, 162, 1305, 10773, 90342, 765936, 6546177, 56293380, 486451251, 4220183916, 36731240910, 320571837810, 2804298945840, 24580601689752, 215832643307217, 1898042178972285, 16714070686567620, 147360883148636850, 1300623629653125855
Offset: 0
-
A225439 := n -> `if`(n=0,1,(GAMMA(n+2/3)/GAMMA(2/3)+GAMMA(n+1/3)/(GAMMA(1/3)))* 3^(2*n-1)/GAMMA(n+1)): seq(A225439(i),i=0..20); # Peter Luschny, Jul 05 2013
-
Table[Sum[Binomial[k,n-k]*3^k*(-1)^(n-k)*Binomial[n+k-1,n-1], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, May 22 2013 *)
-
a(n):=if n=0 then 1 else sum(binomial(k,n-k)*3^(k)*(-1)^(n-k)*binomial(n+k-1,n-1),k,0,n);
-
my(x='x+O('x^66)); Vec(3*x/((1-(1-9*x)^(1/3))*(1-9*x)^(2/3))) \\ Joerg Arndt, May 08 2013
-
{a(n)=local(B=(1-(1-9*x+x^2*O(x^n))^(1/3))/(3*x));polcoeff(1+x*B'/B, n, x)} \\ Paul D. Hanna, May 08 2013
A232973
Dziemianczuk's array S(i,j) read by antidiagonals.
Original entry on oeis.org
1, 3, 6, 15, 33, 60, 81, 189, 378, 675, 459, 1107, 2349, 4509, 7992, 2673, 6588, 14553, 29403, 55188, 97416, 15849, 39663, 90207, 189351, 371358, 687258, 1209951, 95175, 240894, 560115, 1211031, 2458998, 4727565, 8664813, 15227190, 576963, 1473147, 3485187
Offset: 0
Array begins:
1, 3, 15, 81, 459, 2673, 15849, ...
6, 33, 189, 1107, 6588, 39663, 240894, ...
60, 378, 2349, 14553, 90207, 560115, 3485187, ...
675, 4509, 29403, 189351, 1211031, 7715331, 49045662, ...
7992, 55188, 371358, 2458998, 16112925, 104838219, 678790125, ...
...
-
\\ Dziemianczuk, Proposition 1
S(n,k)=sum(i=0,n+k,sum(j=0,i,binomial(k,j)*binomial(j,i-j)*binomial(2*k+n-i,k)));
A=[]; for(i=1,10,A=concat(A,vector(i,j,S(j-1,i-1))));
A \\ Lars Blomberg, Jul 20 2017
A260774
Certain directed lattice paths.
Original entry on oeis.org
1, 6, 33, 189, 1107, 6588, 39663, 240894, 1473147, 9058554, 55954395, 346934745, 2157989445, 13459891500, 84152389833, 527224251861, 3309194474451, 20804569738218, 130987600581699, 825796890644895, 5212349717906889, 32935490120006604, 208316726580941037
Offset: 0
-
b:= proc(x, y) option remember; `if`([x, y]=[0$2], 1,
`if`(x>0, add(b(x-1, y+j), j=-1..1), 0)+
`if`(y>0, b(x, y-1), 0)+`if`(y<0, b(x, y+1), 0))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 21 2021
-
b[x_, y_] := b[x, y] = If[{x, y} == {0, 0}, 1,
If[x > 0, Sum[b[x - 1, y + j], {j, -1, 1}], 0] +
If[y > 0, b[x, y - 1], 0] + If[y < 0, b[x, y + 1], 0]];
a[n_] := b[n, 1];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)
A243116
a(n) = Sum_{k=0..n} C(n + 2*k, 3*k) * C(3*k, 2*k).
Original entry on oeis.org
1, 4, 28, 220, 1816, 15424, 133456, 1169872, 10354528, 92331904, 828204928, 7464652672, 67547774464, 613295870464, 5584367987968, 50974595472640, 466307503244800, 4273832891668480, 39237007284226048, 360768875975526400, 3321625537178669056, 30619908430235828224, 282578914501599305728
Offset: 0
G.f.: A(x) = 1 + 4*x + 28*x^2 + 220*x^3 + 1816*x^4 + 15424*x^5 +...
where
A(x) = 1/(1-x) + 3*x/(1-x)^4 + 15*x^2/(1-x)^7 + 84*x^3/(1-x)^10 + 495*x^4/(1-x)^13 + 3003*x^5/(1-x)^16 + 18564*x^6/(1-x)^19 + 116280*x^7/(1-x)^22 + 735471*x^8/(1-x)^25 +...+ C(3*n, n)*x^n/(1-x)^(3*n+1) +...
ILLUSTRATION OF TERMS.
The sequence A005809(k) = C(3*k, 2*k) begins:
[1, 3, 15, 84, 495, 3003, 18564, 116280, 735471, 4686825, ...];
the triangle A109955(n,k) = C(n + 2*k, 3*k) begins:
1;
1, 1;
1, 4, 1;
1, 10, 7, 1;
1, 20, 28, 10, 1;
1, 35, 84, 55, 13, 1;
1, 56, 210, 220, 91, 16, 1;
1, 84, 462, 715, 455, 136, 19, 1; ...
where a(n) = Sum_{k=0..n} A109955(n,k) * A005809(k):
a(1) = 1*1 + 1*3 = 4;
a(2) = 1*1 + 4*3 + 1*15 = 28;
a(3) = 1*1 + 10*3 + 7*15 + 1*84 = 220;
a(4) = 1*1 + 20*3 + 28*15 + 10*84 + 1*495 = 1816; ...
compare to: Sum_{k=0..n} (-1)^k * A109955(n,k) * A005809(k) = (-2)^n.
-
Table[Sum[Binomial[n + 2*k, 3*k] * Binomial[3*k, 2*k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 21 2014 *)
-
{a(n)=sum(k=0,n, binomial(n+2*k,3*k) * binomial(3*k,2*k))}
for(n=0,30,print1(a(n),", "))
-
{a(n)=-(-2)^n + 2*sum(k=0, n\2, binomial(n+4*k, 6*k) * binomial(6*k, 4*k))}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(A=1); A=sum(m=0, n, binomial(3*m, m) * x^m/(1-x +x*O(x^n))^(3*m+1)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A260772
Certain directed lattice paths.
Original entry on oeis.org
1, 3, 10, 41, 190, 946, 4940, 26693, 147990, 837102, 4811860, 28027210, 165057100, 981177060, 5879570200, 35478788269, 215398416870, 1314794380374, 8064119033220, 49673222082782, 307163049317540, 1906066361809148, 11865666767361960, 74081851132379426
Offset: 0
- Lars Blomberg, Table of n, a(n) for n = 0..100
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, Discrete Mathematics, Volume 339, Issue 3, 6 March 2016, Pages 1116-1139.
- Heba Bou KaedBey, Mark van Hoeij, and Man Cheung Tsui, Solving Third Order Linear Difference Equations in Terms of Second Order Equations, arXiv:2402.11121 [math.AC], 2024. See p. 3.
-
# A260772 satisfies a 4th-order recurrence that can be reduced
# to a 2nd-order recurrence given in this program t:
t := proc(n) options remember;
if n <= 1 then
[-1/2, 0, 1, 4][2*n+2]
else
(16*(n-2)*(2*n-3)*(5*n-2)*t(n-2) + (440*n^3-1056*n^2+724*n-144)*t(n-1))
/( n*(2*n+1)*(5*n-7) )
fi
end:
A260772 := proc(n)
t(n/2) + ( (2-2*n)*t((n-1)/2)+(n+2)*t((n+1)/2) ) / (1+5*n)
end:
seq(A260772(i),i=0..100);
# Mark van Hoeij, Jul 14 2022
-
a(n):=if n=0 then 1 else sum((-1)^j*binomial(n,j)*binomial(3*n-4*j,n-4*j+1),j,0,(n+1)/4)/n; /* Vladimir Kruchinin, Apr 04 2019 */
-
a(n) = if (n==0, 1, sum(j=0, (n+1)/4, (-1)^j*binomial(n,j)*binomial(3*n-4*j, n-4*j+1))/n); \\ Michel Marcus, Apr 05 2019
Showing 1-7 of 7 results.
Comments