cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233389 Naturally embedded ternary trees having no internal node of label greater than 1.

Original entry on oeis.org

1, 1, 3, 11, 46, 209, 1006, 5053, 26227, 139726, 760398, 4211959, 23681987, 134869448, 776657383, 4516117107, 26486641078, 156532100029, 931426814462, 5576590927886, 33574649282538, 203169756237944, 1235156720288767, 7541099028832261, 46222213821431646
Offset: 0

Views

Author

Markus Kuba, Dec 08 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 1+n*(n-1),
          ((1349*n^2-2738*n+953)*n*a(n-1) -(5567*n^3-20114*n^2
           +22439*n-7320)*a(n-2)-(3*(3*n-4))*(19*n-11)*(3*n-5)
           *a(n-3))/((2*(2*n-1))*(n+1)*(19*n-30)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 03 2017
  • Mathematica
    a[n_] := a[n] = If[n < 3, 1 + n*(n - 1), ((1349*n^2 - 2738*n + 953)*n*a[n - 1] - (5567*n^3 - 20114*n^2 + 22439*n - 7320)*a[n - 2] - (3*(3*n - 4)) * (19*n - 11)*(3*n - 5)*a[n - 3])/((2*(2*n - 1))*(n + 1)*(19*n - 30))];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N); T=serreverse(x-x^3)/x; v=Vec(((T-2)*T^3/(T^2-3*T+1))); vector(#v\2, n, v[2*n-1]) \\ Joerg Arndt, May 26 2016

Formula

G.f.: (T(z) - 2)*T^3(z)/(T^2(z) - 3*T(z) + 1), where T(z) = 1 + z*T^3(z) is the generating function of ternary trees - see A001764.
From Peter Bala, Feb 06 2022: (Start)
a(n) = (2/(n+1))*binomial(3*n,n) + Sum_{k=0..n} (-1)^(k+1)*Fibonacci(k+1)* binomial(3*n,n-k)*(n*(11*k+5)-2*k(k+1))/(n*(2*n+k+1)) for n >= 1. See Kuba, Corollary 1, p. 6.
O.g.f.: A(x) = (1/x)*(B(x) - 2)/(B(x) - 1), where B(x) = Sum_{n >= 0} 2*(3*n)!/((2*n+1)!*((n+1)!))*x^n is the o.g.f. of A000139. (End)

Extensions

More terms from F. Chapoton, May 26 2016