A052210
Numbers k such that k^3 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 10, 32, 100, 1000, 10000, 31623, 100000, 316228, 1000000, 3162278, 10000000, 31622777, 100000000, 1000000000, 10000000000, 31622776602, 100000000000, 316227766017, 1000000000000, 10000000000000, 31622776601684, 100000000000000, 316227766016838
Offset: 1
32^3=32768, which starts with 32.
-
Join[{0}, Sort[ Table[ 10^i,{i,0,22} ]~Join~Select[ Table[ Ceiling[ Sqrt[ 10 ]*10^i ],{i,0,22} ], Take[ IntegerDigits[ #^3 ],Length[ IntegerDigits[ # ] ] ]==IntegerDigits[ # ]& ] ] ]
-
r=29; print1(1, ", "); e=3; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", "))); \\ Arkadiusz Wesolowski, Dec 10 2013
A052211
Numbers k such that k^4 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 10, 100, 1000, 10000, 46416, 100000, 464159, 1000000, 2154435, 4641589, 10000000, 21544347, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 2154434690032, 4641588833613, 10000000000000, 21544346900319, 46415888336128
Offset: 1
46416^4 starts with 46416.
-
Join[{0}, Sort[ Table[ 10^i,{i,0,22} ]~Join~Select[ Table[ Ceiling[ 10.^(1/3)*10^i ],{i,0,22} ], Take[ IntegerDigits[ #^4 ],Length[ IntegerDigits[ # ] ] ]==IntegerDigits[ # ]& ]~Join~Select[ Table[ Ceiling[ 10.^(2/3)*10^i ],{i,0,22} ],Take[ IntegerDigits[ #^4 ],Length[ IntegerDigits[ # ] ] ]==IntegerDigits[ # ]& ] ] ]
-
r=41; print1(1, ", "); e=4; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", "))); \\ Arkadiusz Wesolowski, Dec 10 2013
A233451
Numbers k such that k^5 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 10, 18, 100, 178, 1000, 10000, 17783, 31623, 100000, 177828, 316228, 1000000, 10000000, 100000000, 1000000000, 5623413252, 10000000000, 100000000000, 177827941004, 316227766017, 1000000000000, 1778279410039, 10000000000000, 31622776601684
Offset: 1
18^5 = 1889568 begins with 18, so 18 is in the sequence.
-
R:= 0,1:
for d from 1 to 100 do
k:= ceil(10^(d/4));
if k^5 - 10^d * k < 10^d then
R:= R, k
fi
od:
R; # Robert Israel, Sep 11 2024
-
kmax=10^6; Select[Range[0,kmax],FromDigits[Drop[IntegerDigits[#^5],-(IntegerLength[#^5]-IntegerLength[#])]]==# &] (* Stefano Spezia, Aug 27 2023 *)
-
r=54; print1(1, ", "); e=5; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));
A233452
Numbers k such that k^6 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 4, 10, 16, 40, 100, 631, 1000, 1585, 2512, 10000, 15849, 25119, 100000, 1000000, 10000000, 15848932, 100000000, 1000000000, 6309573445, 10000000000, 100000000000, 251188643151, 1000000000000, 3981071705535, 6309573444802, 10000000000000
Offset: 1
4^6 = 4096 begins with 4, so 4 is in the sequence.
-
kmax=10^6; Select[Range[0,kmax],FromDigits[Drop[IntegerDigits[#^6],-(IntegerLength[#^6]-IntegerLength[#])]]==# &] (* Stefano Spezia, Aug 27 2023 *)
-
r=65; print1(1, ", "); e=6; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));
A233454
Numbers k such that k^8 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 2, 10, 14, 72, 100, 139, 518, 1000, 10000, 13895, 19307, 26827, 37276, 100000, 1000000, 10000000, 13894955, 26826958, 100000000, 193069773, 517947468, 1000000000, 1930697729, 10000000000, 100000000000, 268269579528, 1000000000000, 3727593720315
Offset: 1
2^8 = 256 begins with 2, so 2 is in the sequence.
-
Join[{0}, Select[Range@ 1000000, Take[IntegerDigits[#^8], IntegerLength@ #] == IntegerDigits@ # &]] (* Michael De Vlieger, Aug 31 2015 *)
-
r=88; print1(1, ", "); e=8; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));
A233455
Numbers k such that k^9 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 10, 75, 100, 750, 1000, 4217, 7499, 10000, 100000, 177828, 1000000, 10000000, 74989421, 100000000, 1000000000, 5623413252, 10000000000, 100000000000, 177827941004, 1000000000000, 1778279410039, 10000000000000, 56234132519035, 100000000000000
Offset: 1
750^9 = 75084686279296875000000000 begins with 750, so 750 is in the sequence.
-
Join[{0}, Select[Range@ 1000000, Take[IntegerDigits[#^9], IntegerLength@ #] == IntegerDigits@ # &]] (* Michael De Vlieger, Aug 31 2015 *)
-
r=112; print1(1, ", "); e=9; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));
A233456
Numbers k such that k^10 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 6, 10, 13, 36, 60, 100, 1000, 10000, 100000, 129155, 278256, 1000000, 10000000, 21544347, 100000000, 1000000000, 10000000000, 59948425032, 100000000000, 599484250319, 1000000000000, 10000000000000, 100000000000000, 464158883361278, 1000000000000000
Offset: 1
6^10 = 60466176 begins with 6, so 6 is in the sequence.
-
kmax=10^6; Select[Range[0,kmax],FromDigits[Drop[IntegerDigits[#^10],-(IntegerLength[#^10]-IntegerLength[#])]]==# &] (* Stefano Spezia, Aug 27 2023 *)
-
r=135; print1(1, ", "); e=10; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));
Showing 1-7 of 7 results.
Comments