A052210
Numbers k such that k^3 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 10, 32, 100, 1000, 10000, 31623, 100000, 316228, 1000000, 3162278, 10000000, 31622777, 100000000, 1000000000, 10000000000, 31622776602, 100000000000, 316227766017, 1000000000000, 10000000000000, 31622776601684, 100000000000000, 316227766016838
Offset: 1
32^3=32768, which starts with 32.
-
Join[{0}, Sort[ Table[ 10^i,{i,0,22} ]~Join~Select[ Table[ Ceiling[ Sqrt[ 10 ]*10^i ],{i,0,22} ], Take[ IntegerDigits[ #^3 ],Length[ IntegerDigits[ # ] ] ]==IntegerDigits[ # ]& ] ] ]
-
r=29; print1(1, ", "); e=3; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", "))); \\ Arkadiusz Wesolowski, Dec 10 2013
A052211
Numbers k such that k^4 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 10, 100, 1000, 10000, 46416, 100000, 464159, 1000000, 2154435, 4641589, 10000000, 21544347, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 2154434690032, 4641588833613, 10000000000000, 21544346900319, 46415888336128
Offset: 1
46416^4 starts with 46416.
-
Join[{0}, Sort[ Table[ 10^i,{i,0,22} ]~Join~Select[ Table[ Ceiling[ 10.^(1/3)*10^i ],{i,0,22} ], Take[ IntegerDigits[ #^4 ],Length[ IntegerDigits[ # ] ] ]==IntegerDigits[ # ]& ]~Join~Select[ Table[ Ceiling[ 10.^(2/3)*10^i ],{i,0,22} ],Take[ IntegerDigits[ #^4 ],Length[ IntegerDigits[ # ] ] ]==IntegerDigits[ # ]& ] ] ]
-
r=41; print1(1, ", "); e=4; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", "))); \\ Arkadiusz Wesolowski, Dec 10 2013
A233452
Numbers k such that k^6 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 4, 10, 16, 40, 100, 631, 1000, 1585, 2512, 10000, 15849, 25119, 100000, 1000000, 10000000, 15848932, 100000000, 1000000000, 6309573445, 10000000000, 100000000000, 251188643151, 1000000000000, 3981071705535, 6309573444802, 10000000000000
Offset: 1
4^6 = 4096 begins with 4, so 4 is in the sequence.
-
kmax=10^6; Select[Range[0,kmax],FromDigits[Drop[IntegerDigits[#^6],-(IntegerLength[#^6]-IntegerLength[#])]]==# &] (* Stefano Spezia, Aug 27 2023 *)
-
r=65; print1(1, ", "); e=6; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));
A233453
Numbers k such that k^7 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 10, 100, 1000, 6813, 10000, 14678, 46416, 100000, 146780, 464159, 1000000, 4641589, 10000000, 21544347, 68129207, 100000000, 1000000000, 10000000000, 100000000000, 316227766017, 681292069058, 1000000000000, 2154434690032, 10000000000000, 21544346900319
Offset: 1
6813^7 = 681347587591081074493576917 begins with 6813, so 6813 is in the sequence.
-
Join[{0},Select[Range[0,5*10^6],IntegerDigits[#]==Take[IntegerDigits[ #^7],IntegerLength[ #]]&]] (* The program generates the first 14 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Mar 31 2022 *)
-
r=80; print1(1, ", "); e=7; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));
A233454
Numbers k such that k^8 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 2, 10, 14, 72, 100, 139, 518, 1000, 10000, 13895, 19307, 26827, 37276, 100000, 1000000, 10000000, 13894955, 26826958, 100000000, 193069773, 517947468, 1000000000, 1930697729, 10000000000, 100000000000, 268269579528, 1000000000000, 3727593720315
Offset: 1
2^8 = 256 begins with 2, so 2 is in the sequence.
-
Join[{0}, Select[Range@ 1000000, Take[IntegerDigits[#^8], IntegerLength@ #] == IntegerDigits@ # &]] (* Michael De Vlieger, Aug 31 2015 *)
-
r=88; print1(1, ", "); e=8; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));
A233455
Numbers k such that k^9 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 10, 75, 100, 750, 1000, 4217, 7499, 10000, 100000, 177828, 1000000, 10000000, 74989421, 100000000, 1000000000, 5623413252, 10000000000, 100000000000, 177827941004, 1000000000000, 1778279410039, 10000000000000, 56234132519035, 100000000000000
Offset: 1
750^9 = 75084686279296875000000000 begins with 750, so 750 is in the sequence.
-
Join[{0}, Select[Range@ 1000000, Take[IntegerDigits[#^9], IntegerLength@ #] == IntegerDigits@ # &]] (* Michael De Vlieger, Aug 31 2015 *)
-
r=112; print1(1, ", "); e=9; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));
A233456
Numbers k such that k^10 starts with k itself (in base 10).
Original entry on oeis.org
0, 1, 6, 10, 13, 36, 60, 100, 1000, 10000, 100000, 129155, 278256, 1000000, 10000000, 21544347, 100000000, 1000000000, 10000000000, 59948425032, 100000000000, 599484250319, 1000000000000, 10000000000000, 100000000000000, 464158883361278, 1000000000000000
Offset: 1
6^10 = 60466176 begins with 6, so 6 is in the sequence.
-
kmax=10^6; Select[Range[0,kmax],FromDigits[Drop[IntegerDigits[#^10],-(IntegerLength[#^10]-IntegerLength[#])]]==# &] (* Stefano Spezia, Aug 27 2023 *)
-
r=135; print1(1, ", "); e=10; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));
Showing 1-7 of 7 results.
Comments