cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A052211 Numbers k such that k^4 starts with k itself (in base 10).

Original entry on oeis.org

0, 1, 10, 100, 1000, 10000, 46416, 100000, 464159, 1000000, 2154435, 4641589, 10000000, 21544347, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 2154434690032, 4641588833613, 10000000000000, 21544346900319, 46415888336128
Offset: 1

Views

Author

Erich Friedman, Jan 29 2000

Keywords

Examples

			46416^4 starts with 46416.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Sort[ Table[ 10^i,{i,0,22} ]~Join~Select[ Table[ Ceiling[ 10.^(1/3)*10^i ],{i,0,22} ], Take[ IntegerDigits[ #^4 ],Length[ IntegerDigits[ # ] ] ]==IntegerDigits[ # ]& ]~Join~Select[ Table[ Ceiling[ 10.^(2/3)*10^i ],{i,0,22} ],Take[ IntegerDigits[ #^4 ],Length[ IntegerDigits[ # ] ] ]==IntegerDigits[ # ]& ] ] ]
  • PARI
    r=41; print1(1, ", "); e=4; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", "))); \\ Arkadiusz Wesolowski, Dec 10 2013

Extensions

0 inserted by Juhani Heino, Aug 31 2015

A307588 Numbers k such that the digits of k^(1/3) begin with k.

Original entry on oeis.org

0, 1, 31, 999, 1000, 31622, 999999, 1000000, 31622776, 999999999, 1000000000, 31622776601, 999999999999, 1000000000000, 31622776601683, 999999999999999, 1000000000000000, 31622776601683792, 31622776601683793, 999999999999999999, 1000000000000000000
Offset: 1

Views

Author

Dmitry Kamenetsky, Apr 17 2019

Keywords

Comments

Program is in A307371.
The subsequence {31, 31622, 31622776, 31622776601, 31622776601683, ...} looks like this subsequence of A052210 {32, 31623, 316228, 3162278, 31622777, ..., 316227766016838, ...}. - Bernard Schott, May 04 2019

Examples

			31622^(1/3) = 31.62251..., which begins with "31622", so 31622 is in the sequence.
The seeming pattern a(3k) = floor(10^(3k-3/2)), a(3k+1) = 10^(3k) - 1, a(3k+2) = 10^(3k), is broken at a(18) = a(19) - 1 = floor(10^(33/2)) - 1. - _Jon E. Schoenfield_, May 01 2019
		

Crossrefs

Cf. A052210 (analog for 3rd power instead of 1/3).

Extensions

a(10)-a(21) from Jon E. Schoenfield, May 01 2019

A233451 Numbers k such that k^5 starts with k itself (in base 10).

Original entry on oeis.org

0, 1, 10, 18, 100, 178, 1000, 10000, 17783, 31623, 100000, 177828, 316228, 1000000, 10000000, 100000000, 1000000000, 5623413252, 10000000000, 100000000000, 177827941004, 316227766017, 1000000000000, 1778279410039, 10000000000000, 31622776601684
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 10 2013

Keywords

Examples

			18^5 = 1889568 begins with 18, so 18 is in the sequence.
		

Crossrefs

Programs

  • Maple
    R:= 0,1:
    for d from 1 to 100 do
      k:= ceil(10^(d/4));
      if k^5 - 10^d * k < 10^d then
        R:= R, k
      fi
    od:
    R; # Robert Israel, Sep 11 2024
  • Mathematica
    kmax=10^6; Select[Range[0,kmax],FromDigits[Drop[IntegerDigits[#^5],-(IntegerLength[#^5]-IntegerLength[#])]]==# &] (* Stefano Spezia, Aug 27 2023 *)
  • PARI
    r=54; print1(1, ", "); e=5; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));

Extensions

0 inserted by Juhani Heino, Aug 31 2015

A233452 Numbers k such that k^6 starts with k itself (in base 10).

Original entry on oeis.org

0, 1, 4, 10, 16, 40, 100, 631, 1000, 1585, 2512, 10000, 15849, 25119, 100000, 1000000, 10000000, 15848932, 100000000, 1000000000, 6309573445, 10000000000, 100000000000, 251188643151, 1000000000000, 3981071705535, 6309573444802, 10000000000000
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 10 2013

Keywords

Examples

			4^6 = 4096 begins with 4, so 4 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    kmax=10^6; Select[Range[0,kmax],FromDigits[Drop[IntegerDigits[#^6],-(IntegerLength[#^6]-IntegerLength[#])]]==# &] (* Stefano Spezia, Aug 27 2023 *)
  • PARI
    r=65; print1(1, ", "); e=6; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));

Extensions

0 inserted by Juhani Heino, Aug 31 2015

A233453 Numbers k such that k^7 starts with k itself (in base 10).

Original entry on oeis.org

0, 1, 10, 100, 1000, 6813, 10000, 14678, 46416, 100000, 146780, 464159, 1000000, 4641589, 10000000, 21544347, 68129207, 100000000, 1000000000, 10000000000, 100000000000, 316227766017, 681292069058, 1000000000000, 2154434690032, 10000000000000, 21544346900319
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 10 2013

Keywords

Examples

			6813^7 = 681347587591081074493576917 begins with 6813, so 6813 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Range[0,5*10^6],IntegerDigits[#]==Take[IntegerDigits[ #^7],IntegerLength[ #]]&]] (* The program generates the first 14 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Mar 31 2022 *)
  • PARI
    r=80; print1(1, ", "); e=7; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));

Extensions

0 inserted by Juhani Heino, Aug 31 2015

A233454 Numbers k such that k^8 starts with k itself (in base 10).

Original entry on oeis.org

0, 1, 2, 10, 14, 72, 100, 139, 518, 1000, 10000, 13895, 19307, 26827, 37276, 100000, 1000000, 10000000, 13894955, 26826958, 100000000, 193069773, 517947468, 1000000000, 1930697729, 10000000000, 100000000000, 268269579528, 1000000000000, 3727593720315
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 10 2013

Keywords

Examples

			2^8 = 256 begins with 2, so 2 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Select[Range@ 1000000, Take[IntegerDigits[#^8], IntegerLength@ #] == IntegerDigits@ # &]] (* Michael De Vlieger, Aug 31 2015 *)
  • PARI
    r=88; print1(1, ", "); e=8; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));

Extensions

0 inserted by Juhani Heino, Aug 31 2015

A233455 Numbers k such that k^9 starts with k itself (in base 10).

Original entry on oeis.org

0, 1, 10, 75, 100, 750, 1000, 4217, 7499, 10000, 100000, 177828, 1000000, 10000000, 74989421, 100000000, 1000000000, 5623413252, 10000000000, 100000000000, 177827941004, 1000000000000, 1778279410039, 10000000000000, 56234132519035, 100000000000000
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 10 2013

Keywords

Examples

			750^9 = 75084686279296875000000000 begins with 750, so 750 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Select[Range@ 1000000, Take[IntegerDigits[#^9], IntegerLength@ #] == IntegerDigits@ # &]] (* Michael De Vlieger, Aug 31 2015 *)
  • PARI
    r=112; print1(1, ", "); e=9; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));

Extensions

0 inserted by Juhani Heino, Aug 31 2015

A233456 Numbers k such that k^10 starts with k itself (in base 10).

Original entry on oeis.org

0, 1, 6, 10, 13, 36, 60, 100, 1000, 10000, 100000, 129155, 278256, 1000000, 10000000, 21544347, 100000000, 1000000000, 10000000000, 59948425032, 100000000000, 599484250319, 1000000000000, 10000000000000, 100000000000000, 464158883361278, 1000000000000000
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 10 2013

Keywords

Examples

			6^10 = 60466176 begins with 6, so 6 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    kmax=10^6; Select[Range[0,kmax],FromDigits[Drop[IntegerDigits[#^10],-(IntegerLength[#^10]-IntegerLength[#])]]==# &] (* Stefano Spezia, Aug 27 2023 *)
  • PARI
    r=135; print1(1, ", "); e=10; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", ")));

Extensions

0 inserted by Juhani Heino, Aug 31 2015

A261751 Numbers n with property that binary expansion of n^3 begins with the binary expansion of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 16, 23, 32, 64, 91, 128, 256, 512, 1024, 2048, 4096, 5793, 8192, 16384, 32768, 46341, 65536, 92682, 131072, 185364, 262144, 370728, 524288, 1048576, 2097152, 2965821, 4194304, 5931642, 8388608, 16777216, 33554432, 47453133, 67108864, 94906266
Offset: 1

Views

Author

Dhilan Lahoti, Aug 30 2015

Keywords

Comments

2^k is always a term in this sequence.
It appears that all solutions are either a power of 2 or approximately sqrt(2) * a power of 2. - Andrew Howroyd, Dec 24 2019

Examples

			23 is a term of this sequence because its cube written in base 2 (10111110000111) starts with its representation in base 2 (10111).
		

Crossrefs

Base 2 version of A052210.
Cf. A004539.

Programs

  • Mathematica
    SetBeginSet[set1_, set2_] :=
      Do[For[i = 1, i <= Length[set1], i++,If[! set1[[i]] == set2[[i]], Return[False]]];Return[True], {1}];
    For[k = 0; set = {}, k <= 100000, k++,If[SetBeginSet[IntegerDigits[k, 2], IntegerDigits[k^3, 2]],Print[k]]]
  • PARI
    ok(n)={my(t=n^3); t == 0 || t>>(logint(t,2)-logint(n,2))==n} \\ Andrew Howroyd, Dec 23 2019
    
  • PARI
    \\ for larger values
    viable(b,k)={my(p=b^3, q=(b+2^k-1)^3, s=logint(q,2), t=s-logint(b,2)+k); (p>>s)==0 || ((p>>t)<=(b>>k) && (b>>k)<=(q>>t))}
    upto(n)={
      local(L=List([0]));
      my(recurse(b,k)=; if(b <= n && viable(b,k), k--; if(k<0, listput(L, b), self()(b,k); self()(b+2^k,k))));
      for(k=0, logint(n,2), recurse(2^k, k));
      Vec(L);
    } \\ Andrew Howroyd, Dec 24 2019

Extensions

Terms a(31) and beyond from Andrew Howroyd, Dec 23 2019

A240925 Lexicographically earliest sequence of distinct terms such that, in base 10, the digits of the cubes of the terms correspond to the digits of the sequence itself.

Original entry on oeis.org

1, 32, 7, 6, 8, 3, 4, 321, 65, 12, 2, 76, 43, 30, 761, 61, 27, 46, 25, 17, 28, 84, 38, 9, 767, 950, 72, 7000, 440, 71, 10, 81, 22, 69, 811, 96, 83, 97, 33, 615, 62, 5, 49, 13, 21, 95, 259, 270, 45, 48, 727, 29, 451, 217, 66, 385, 73, 75000
Offset: 1

Views

Author

Paul Tek, Aug 03 2014

Keywords

Comments

Leading zeros are ignored.

Examples

			+--------+---------------------------------------------+
|  a(n)  | 1,32, 7,6,8,3,4,321,  65, 12, 2,76, 43, ... |
+--------+---------------------------------------------+
| digits | 1 3 2 7 6 8 3 4 3 2 1 6 5 1 2 2 7 6 4 3 ... |
+--------+---------------------------------------------+
| a(n)^3 | 1,32768,    343,  216,  512,  27, 64, ...   |
+--------+---------------------------------------------+
		

Crossrefs

Cf. A052210.

Programs

  • Perl
    See Link section.
Showing 1-10 of 11 results. Next