A073833 Numerators of b(n) where b(1) = 1, b(i) = b(i-1) + 1/b(i-1).
1, 2, 5, 29, 941, 969581, 1014556267661, 1099331737522548368039021, 1280590510388959061548230114212510564911731118541, 1726999038066943724857508638586386504281539279376091034086485112150121338989977841573308941492781
Offset: 1
Examples
1, 2, 5/2, 29/10, 941/290, 969581/272890, 1014556267661/264588959090, 1099331737522548368039021/268440386798659418988490, ...
References
- H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 187.
- D. J. Newman, A Problem Seminar, Springer; see Problem #60.
- J. H. Silverman, The arithmetic of dynamical systems, Springer, 2007, see p. 113 Table 3.1.
Links
- Elijah M. Kin, Table of n, a(n) for n = 1..13
- Sjoerd C. de Vries, Mathematica file illustrating geometric application of the sequence
- Steven Finch, Popa's "Recurrent Sequences" and Reciprocity, arXiv:2412.11806 [math.CA], 2024. See p. 16.
- Clark Kimberling, Polynomials associated with reciprocation, JIS 12 (2009) 09.3.4.
- Eric Weisstein's World of Mathematics, Fractional Chromatic Number
- Eric Weisstein's World of Mathematics, Mycielski Graph
Programs
-
Mathematica
f[n_]:=n+1/n;Prepend[Numerator[NestList[f,2,9]],1] (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *) Numerator[NestList[# + 1/# &, 1, 10]] (* Eric W. Weisstein, Mar 05 2001 *) a[ n_] := If[ n<1, 0, If[ n<3, n, With[{x = a[n-2]^2, y = a[n-1]}, y y + x y - x x]]]; (* Michael Somos, Aug 16 2014 *) Numerator@RecurrenceTable[{b[n] == b[-2 + n] - b[-2 + n]^2/b[-1 + n] + b[-1 + n], b[1] == 1, b[2] == 2}, b, {n, 1, 10}] (* Sjoerd C. de Vries, Aug 13 2015 *)
-
PARI
{a(n) = if( n<1, 0, if( n<3, n, my(x = a(n-2)^2, y = a(n-1)); y^2 + x*y -x^2))}; /* Michael Somos, Mar 05 2012 */
Formula
a(n) = a(n-1)^2 + A073834(n-1)^2; A073834(n) = a(n-1) * A073834(n-1). - Franklin T. Adams-Watters, Aug 04 2008
0 = a(n)^2*(a(n+1) - a(n)^2) - (a(n+2) - a(n+1)^2) for all n > 0. - Michael Somos, Aug 16 2014
Comments