cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A233770 Decimal expansion of lim_{n -> infinity} b(n)^2 - 2n - (log n)/2 where b(i) = b(i-1) + 1/b(i-1) for i >= 2, b(1) = 1 (see A073833).

Original entry on oeis.org

2, 7, 6, 8, 5, 7, 6, 2, 4, 8, 6, 2, 5, 7, 6, 5, 3, 8, 9, 3, 6, 4, 3, 7, 2, 5, 0, 8, 2, 3, 5, 7, 3, 3, 9, 6, 3, 1, 7, 9, 7, 9, 7, 3, 7, 5, 2, 7, 5, 1, 3, 7, 3, 9, 1, 5, 9, 7, 7, 3, 1, 6, 4, 3, 5, 4, 8, 5, 0, 1, 4, 1, 8, 0, 8, 2, 9, 7, 1, 2, 4, 3, 1, 1, 8, 9, 8
Offset: 0

Views

Author

Keywords

Comments

b(n)^2 = t/2 + u + (u - 1/2)/t + (-u^2 + 2*u - 11/12)/t^2 + (4*u^3/3 - 5*u^2 + 17*u/3 - 65/36)/t^3 + ... where t=4*n, u=(log n)/2+c, and c=-0.27685762486257653893643725082....
c = (log c1)/2 where c1 is a constant described in the comments in A073833; its digits are in A232975.

Examples

			-0.27685762486257653893643725082357339631797973752751373915977316435485014180...
		

Crossrefs

A232975 Decimal expansion of lim_{n -> infinity} (1/n)*exp(2*(b(n)^2-2n)) where b(i) = b(i-1) + 1/b(i-1) for i >= 2, b(1) = 1 (see A073833).

Original entry on oeis.org

5, 7, 4, 8, 1, 0, 2, 7, 4, 6, 7, 1, 7, 8, 5, 0, 6, 5, 2, 9, 6, 3, 4, 7, 8, 4, 6, 3, 5, 3, 0, 9, 2, 8, 0, 0, 7, 6, 0, 9, 8, 7, 8, 4, 5, 5, 2, 0, 8, 9, 0, 6, 1, 9, 0, 1, 5, 1, 5, 5, 4, 7, 8, 6, 6, 6, 4, 5, 5, 7, 3, 4, 1, 9, 9, 1, 6, 2, 5, 9, 1, 2, 6, 9, 5, 8, 7
Offset: 0

Views

Author

Keywords

Comments

See also comments in A073833.

Examples

			0.574810274671785065296347846353092800760987845520890619015155478666455734199...
		

Crossrefs

Extensions

More terms from Jon E. Schoenfield, Dec 15 2013

A161500 Primes dividing some member of A073833.

Original entry on oeis.org

2, 5, 29, 41, 89, 101, 109, 269, 421, 509, 521, 709, 929, 941, 1549, 1861, 2281, 2521, 2749, 2801, 2909, 3121, 3169, 3469, 5821, 5881, 7109, 8069, 8969, 9041, 9181, 10061, 10601, 11549, 15121, 16061, 16889, 16981, 21929, 30089, 30169, 32561, 41149
Offset: 1

Views

Author

Keywords

Comments

Primes that divide A073833(n) will divide A073834(m) for any m > n, and this is all the prime divisors of A073834(m).
Iterating f(x) = x + 1/x modulo p will eventually either produce a zero (in which case p is in this sequence), or it will loop to an earlier term (in which case it is not). Since f(-x) = -f(x), encountering the negation of an earlier term means that the iteration is looping.
Note that A073833(6) = 969581 = 521 * 1861 is the first composite member of that sequence.

Crossrefs

Programs

  • PARI
    ina(p)=local(m,k,v);m=Mod(1,p);v=vector(p\2);while(m!=0,k=lift(m);if(2*k>p,k=p-k);if(v[k],return(0));v[k]=1;m+=1/m);1

A147987 Coefficients of numerator polynomials P(n,x) associated with reciprocation.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 7, 0, 13, 0, 7, 0, 1, 1, 0, 15, 0, 83, 0, 220, 0, 303, 0, 220, 0, 83, 0, 15, 0, 1, 1, 0, 31, 0, 413, 0, 3141, 0, 15261, 0, 50187, 0, 115410, 0, 189036, 0, 222621, 0, 189036, 0, 115410, 0, 50187, 0, 15261, 0, 3141, 0, 413, 0, 31, 0, 1, 1, 0, 63
Offset: 1

Views

Author

Clark Kimberling, Nov 24 2008

Keywords

Comments

1. P(n,1)=A073833(n) for n>=1; P(n,2)=A073833(n+1) for n>=0.
2. P(n)=P(n-1)^2+P(n-1)*P(n-2)^2-P(n-2)^4 for n>=3.
3. For n>=3, P(n)=P(n,x)=S(n,i*x), where S(n) is the polynomial at A147985.
Thus all the zeros of P(n,x), for n>=2, are nonreal.

Examples

			P(1) = x
P(2) = x^2+1
P(3) = x^4+3*x^2+1
P(4) = x^8+7*x^6+13*x^4+7x^2+1
so that, as an array, the sequence begins with:
1 0
1 0 1
1 0 3 0 1
1 0 7 0 13 0 7 0 1
		

Crossrefs

Programs

  • Mathematica
    p[1] = x; q[1] = 1; p[n_] := p[n] = p[n-1]^2 + q[n-1]^2; q[n_] := q[n] = p[n-1]*q[n-1]; row[n_] := CoefficientList[p[n], x] // Reverse; Table[row[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Apr 22 2013 *)

Formula

The basic idea is to iterate the reciprocation-sum mapping x/y -> x/y+y/x.
Let x be an indeterminate, P(1)=x, Q(1)=1 and for n>1, define P(n)=P(n-1)^2+Q(n-1)^2 and Q(n)=P(n-1)*Q(n-1), so that P(n)/Q(n)=P(n-1)/Q(n-1)-Q(n-1)/P(n-1).

A073834 Denominators of b(n) where b(1) = 1, b(i) = b(i-1) + 1/b(i-1).

Original entry on oeis.org

1, 1, 2, 10, 290, 272890, 264588959090, 268440386798659418988490, 295105036840595214385430531020664149472669868290, 377908709746050392481071609609580527436122569261424131112048023467330784739529329885668846964890
Offset: 1

Views

Author

Alex Fink, Aug 12 2002

Keywords

Comments

a(n) is also the denominator of the fractional chromatic number of the Mycielski graph M_n - Eric W. Weisstein, Mar 05 2011

References

  • H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 187.
  • D. J. Newman, A Problem Seminar, Springer; see Problem #60.
  • J. H. Silverman, The arithmetic of dynamical systems, Springer, 2007, see p. 113 Table 3.1

Crossrefs

See A073833 for numerators.

Programs

  • Mathematica
    f[n_]:=n+1/n; Prepend[Denominator[NestList[f,2,9]],1] (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *)
    Denominator[NestList[# + 1/# &, 1, 10]] (* Eric W. Weisstein, Mar 05 2011 *)
  • PARI
    {a(n) = local(x, y); if( n<1, 0, if( n<3, n, x = a(n-2)^2; y = a(n-1); y*y + x * (y - x)))} /* Michael Somos, Mar 05 2012 */

A367787 Let b(0) = 1, b(n) = Sum_{k=0..n-1} b(k) / b(n-k-1), then a(n) is the numerator of b(n).

Original entry on oeis.org

1, 1, 2, 7, 44, 3459, 21398845, 204701870532176, 47683439994850565666251869149, 203292005443961363023193564438853229653319486912062841397
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 30 2023

Keywords

Comments

The next term is too large to include.

Examples

			1, 1, 2, 7/2, 44/7, 3459/308, 21398845/1065372, 204701870532176/5699432573835, ...
		

Crossrefs

Cf. A000108, A022857, A022858, A073833, A367788 (denominators).

Programs

  • Mathematica
    b[0] = 1; b[n_] := b[n] = Sum[b[k]/b[n - k - 1], {k, 0, n - 1}]; a[n_] := Numerator[b[n]]; Table[a[n], {n, 0, 9}]

Formula

G.f. for fractions satisfies: 1 / Sum_{n>=0} b(n) * x^n = 1 - x * Sum_{n>=0} x^n / b(n).

A332396 Decimal expansion of lim_{n->infinity} (b(n)/n - (n - log(n))/4) where {b(n)} is the real-valued sequence defined by b(1)=1 and b(n+1) = b(n) + sqrt(b(n)) for n > 0.

Original entry on oeis.org

6, 7, 5, 1, 7, 7, 4, 4, 2, 4, 5, 8, 5, 5, 7, 1, 3, 9, 8, 1, 3, 2, 8, 5, 6, 2, 5, 0, 7, 5, 8, 2, 7, 6, 3, 3, 6, 8, 4, 0, 7, 3, 1, 5, 8, 9, 8, 9, 0, 5, 1, 5, 9, 1, 4, 0, 1, 1, 3, 0, 8, 1, 0, 8, 5, 9, 1, 5, 1, 9, 7, 2, 9, 4, 9, 8, 4, 0, 2, 3, 7, 9, 3, 5, 3, 3, 7
Offset: 0

Views

Author

Jon E. Schoenfield, Feb 10 2020

Keywords

Comments

Consider the "add the square root" sequence {b(n)} starting with 1, i.e., b(1)=1, b(n+1) = b(n) + sqrt(b(n)) for n > 0: at each step, the next term is obtained simply by adding the current term to its square root, so the sequence begins {1, 2, 2 + sqrt(2), 2 + sqrt(2) + sqrt(2 + sqrt(2)), ...}, i.e., {1, 2, 3.414213..., 5.261972..., ...}.
The 1st, 10th, 100th, and 1000th terms are
b(10^0) = 1.0
b(10^1) = 25.956...
b(10^2) = 2452.850...
b(10^3) = 248949.869...
b(10^4) = 24983729.385...
b(10^5) = 2499779700.562...
Since the difference between successive terms is b(n+1) - b(n) = sqrt(b(n)) and the similar differential equation (d/dx)f(x) = sqrt(f(x)) is satisified by the function f(x) = (1/4)*x^2, it is perhaps not surprising that lim_{n->infinity} b(n)/n^2 = 1/4. More precisely, it can be shown that, as n increases, b(n) approaches
(1/4)*n^2
+ u*n
+ u^2 - u/2
+ (-(1/2)*u^2 + u/4 - 1/96)/n
+ ((1/3)*u^3 + 0*u^2 + (-5/48)*u + 7/576)/n^2
+ ...
where u = -(1/4)*log(n) + c
and c = 0.675177442458557139813285625075...
It follows that lim_{n->infinity} (b(n)/n - (n - log(n))/4) = c.
If we were to define {b(n)} instead as b(1)=1, b(n+1) = b(n) + 1/b(n) for n > 0 (i.e., "add the reciprocal" rather than "add the square root"), we would obtain the rational-valued sequence {b(n)} = {1, 2, 5/2, 29/10, 941/290, ...} (see A073833 and, for a constant arising from that sequence, A233770).

Examples

			0.67517744245855713981328562507582763368407315898905...
		

Crossrefs

Showing 1-7 of 7 results.