cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A233831 a(n) = -2*a(n-1) -2*a(n-2) + a(n-3). a(0) = -1, a(1) = 1, a(2) = 1.

Original entry on oeis.org

-1, 1, 1, -5, 9, -7, -9, 41, -71, 51, 81, -335, 559, -367, -719, 2731, -4391, 2601, 6311, -22215, 34409, -18077, -54879, 180321, -268961, 122401, 473441, -1460645, 2096809, -798887, -4056489, 11807561, -16301031, 4930451, 34548721, -95259375, 126351759
Offset: 0

Views

Author

Michael Somos, Dec 16 2013

Keywords

Examples

			G.f. = -1 + x + x^2 - 5*x^3 + 9*x^4 - 7*x^5 - 9*x^6 + 41*x^7 - 71*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((-1-x+x^2)/(1+2*x+2*x^2-x^3))); // G. C. Greubel, Aug 07 2018
  • Mathematica
    CoefficientList[Series[(-1-x+x^2)/(1+2*x+2*x^2-x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 07 2018 *)
    LinearRecurrence[{-2,-2,1},{-1,1,1},40] (* Harvey P. Dale, Nov 28 2024 *)
  • PARI
    {a(n) = if( n<0, polcoeff( (-1 +3*x + x^2) / (1 - 2*x - 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( (-1 - x + x^2) / (1 + 2*x + 2*x^2 - x^3) + x * O(x^n), n))}
    

Formula

G.f.: (-1 - x + x^2) / (1 + 2*x + 2*x^2 - x^3).
a(-n) = A233828(n).
a(n) - a(n-1) = -2 * (-1)^n * A078004(n).
a(n)^2 - a(n-1) * a(n+1) = -2 * (-1)^n * A078054(n-1).

A287898 Number of ways to go up and down n stairs, with fewer than 4 stairs at a time, stepping on each stair at least once.

Original entry on oeis.org

1, 3, 9, 27, 79, 233, 687, 2025, 5969, 17595, 51865, 152883, 450655, 1328401, 3915743, 11542481, 34023905, 100292659, 295633833, 871443275, 2568763439, 7571973753, 22319994767, 65792907193, 193938514865, 571674807403, 1685132453689, 4967284459107
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2017

Keywords

Comments

Also the number of words using 0, 1 and 2 which have n-1 length and don't appear 0000 or 1111.

Examples

			n = 2
0->1->2->0 (0), 0->2->1->0 (1), 0->1->2->1->0 (2). So a(2) = 3.
n = 3
0->1->2->3->0    (00), 0->1->3->2->0    (01), 0->1->2->3->2->0    (02),
0->2->3->1->0    (10), 0->3->2->1->0    (11), 0->2->3->2->1->0    (12),
0->1->2->3->1->0 (20), 0->1->3->2->1->0 (21), 0->1->2->3->2->1->0 (22). So a(3) = 9.
...
n = 5
0->1->2->3->5->4->0 (0001), ... , 0->4->5->3->2->1->0 (1110),
0->4->5->4->3->2->1->0 (1112), ... , 0->1->2->3->4->5->4->3->2->1->0 (2222).
So a(5) = 81 - 2 = 79.
		

Crossrefs

Cf. A001333, A233828(n-1).

Programs

  • Mathematica
    CoefficientList[Series[(1 + x)*(1 + x^2)/(1 - 2*x - 2*x^2 - 2*x^3 - x^4), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 02 2017 *)
  • PARI
    Vec(x*(1 + x)*(1 + x^2) / (1 - 2*x - 2*x^2 - 2*x^3 - x^4) + O(x^30)) \\ Colin Barker, Jun 02 2017
  • Ruby
    def f(ary, n)
      return false if ary.size < n
      a = ary[-1]
      ary[-n..-2].all?{|i| i == a}
    end
    def A(k, n)
      f_ary = [[]]
      ary = [1]
      (n - 1).times{
        b_ary = []
        f_ary.each{|i|
          i0, i1, i2 = i + [0], i + [1], i + [2]
          b_ary << i0 if !f(i0, k)
          b_ary << i1 if !f(i1, k)
          b_ary << i2
        }
        f_ary = b_ary
        ary << f_ary.size
      }
      ary
    end
    p A(4, 10)
    

Formula

a(n+4) = 2*a(n+3) + 2*a(n+2) + 2*a(n+1) + a(n).
G.f.: x*(1 + x)*(1 + x^2) / (1 - 2*x - 2*x^2 - 2*x^3 - x^4). - Colin Barker, Jun 02 2017

Extensions

More terms from Colin Barker, Jun 02 2017
Showing 1-2 of 2 results.