A095839
a(n) = ((2*n)!/(n!*2^(n-1)))*Integral_{x=1/2..1} (sqrt(1-x^2)/x)^(2*n) dx.
Original entry on oeis.org
1, 1, 5, 51, 807, 17445, 479565, 16019955, 630301455, 28552506885, 1463744449125, 83780913568275, 5296205435649975, 366478026602012325, 27552067849812030525, 2236327624673777509875, 194908916445067162713375, 18154937081288124469477125
Offset: 0
Al Hakanson (Hawkuu(AT)excite.com), Jun 08 2004
-
A095839 := proc(n)
local k;
(4^k-2)/2/(2*k-1) ;
add(%*(-1)^k*binomial(n,k),k=0..n) ;
%*(-1)^n*(2*n)!/n!/2^(n-1) ;
end proc: # R. J. Mathar, Feb 13 2014
-
f[n_] := Numerator[ Integrate[(Sqrt[1 - x^2]/x)^(2n), {x, 1/2, 1}]*(2n)!/(n!2^(n + 1)!)]; Table[ f[n], {n, 0, 11}] (* Robert G. Wilson v *)
f[n_] := Numerator[2^(-2 - Gamma[2 + n])*3^(1 + n)*(2*n)!* Hypergeometric2F1Regularized[1, 1/2 + n, 2 + n, -3]]; Table[f[n], {n, 0, 11}] (* Eric W. Weisstein, Nov 19 2005 *)
-
{a(n)=local(A=(2-sqrt(1-6*x+x^2*O(x^n)))/(1+2*x)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 22 2013
Original entry on oeis.org
1, 1, 5, 51, 807, 17445, 479565, 16019955, 630301455, 28552506885, 1463744449125, 83780913568275, 5296205435649975, 366478026602012325, 27552067849812030525, 2236327624673777509875, 194908916445067162713375, 18154937081288124469477125, 1799824448875247911270279125
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 51*x^3/3! + 807*x^4/4! + 17445*x^5/5! +...
where A(x)^3 = 1 + 3*x + 21*x^2/2! + 249*x^3/3! + 4275*x^4/4! + 97155*x^5/5! +...
Integral 1/A(x) dx = x - x^2/2! - 3*x^3/3! - 27*x^4/4! - 405*x^5/5! - 8505*x^6/6! +...
Further,
Series_Reversion(Integral 1/A(x) dx) = x + x^2/2 + 3*x^3/3 + 12*x^4/4 + 55*x^5/5 + 273*x^6/6 + 1428*x^7/7 +...+ A001764(n-1)*x^n/n +...
where A001764(n) = binomial(3*n,n)/(2*n+1).
-
CoefficientList[Series[(2-Sqrt[1-6*x])/(1+2*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=1+A^3*intformal(1/(A+x*O(x^n))));n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
-
/* From formula using g.f. of A001764 G(x) = 1 + x*G(x)^3: */
{a(n)=local(G=sum(m=0,n,binomial(3*m,m)/(2*m+1)*x^m)+x*O(x^n),A=1);A=1/deriv(serreverse(intformal(G))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* Explicit formula: 1/(1 - x*C(3*x/2)), C(x) = 1 + x*C(x)^2 */
{a(n)=local(A=(2-sqrt(1-6*x+x^2*O(x^n)))/(1+2*x)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* From formula: 1 + Series_Reversion((x - x^2/2)/(1+x)^2): */
{a(n)=local(A=1,X=x+x^2*O(x^n));A=1+serreverse((X-X^2/2)/(1+X)^2); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A234291
E.g.f. satisfies: A(x) = 1 + A(x)^3 * Integral 1/A(x)^2 dx.
Original entry on oeis.org
1, 1, 4, 34, 460, 8608, 206152, 6020992, 207574240, 8251015264, 371527296256, 18691127602816, 1039066330203520, 63253339835514112, 4184830238170091008, 298985971407749744128, 22941517126450315985920, 1881603821848104123344896, 164271703613261014954276864
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 460*x^4/4! + 8608*x^5/5! +...
where A(x)^3 = 1 + 3*x + 18*x^2/2! + 180*x^3/3! + 2628*x^4/4! + 51264*x^5/5! +...
Integral 1/A(x)^2 dx = x - 2*x^2/2! - 2*x^3/3! - 20*x^4/4! - 272*x^5/5! - 5096*x^6/6! +...
Further,
Series_Reversion(Integral 1/A(x)^2 dx) = x + 2*x^2/2 + 7*x^3/3 + 30*x^4/4 + 143*x^5/5 + 728*x^6/6 + 3876*x^7/7 +...+ A006013(n-1)*x^n/n +...
where A006013(n) = binomial(3*n+1,n)/(n+1).
-
seq(n! * coeff(series(-3/(2*LambertW(-1,-3/2*exp((x-3)/2))), x, n+1), x, n), n = 0..10) # Vaclav Kotesovec, Dec 27 2013
-
CoefficientList[1 + InverseSeries[Series[3*x/(1+x) - 2*Log[1+x], {x, 0, 20}], x],x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=1+A^3*intformal(1/(A^2+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* Explicit formula using g.f. of A001764, G(x) = 1 + x*G(x)^3: */
{a(n)=local(G=sum(m=0, n, binomial(3*m, m)/(2*m+1)*x^m)+x*O(x^n), A=1); A=1/sqrt(deriv(serreverse(intformal(G^2)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* Explicit formula: 1 + Series_Reversion(3*x/(1+x) - 2*log(1+x)): */
{a(n)=local(A=1, X=x+x^2*O(x^n)); A=1+serreverse(3*X/(1+X)-2*log(1+X)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments