cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A246959 Numbers of (undirected) Hamiltonian cycles in the n-Sierpiński gasket graph.

Original entry on oeis.org

1, 1, 8, 13824, 71328803586048, 9798477119793909670551703700100284084649984
Offset: 1

Views

Author

Max Alekseyev, Sep 08 2014

Keywords

Crossrefs

Programs

  • Magma
    [1,1] cat [Floor(8 * 12^((3^(n-2)-3)/2)): n in [3..10]]; // Vincenzo Librandi, Jun 15 2015
  • Mathematica
    Join[{1, 1}, Table[8 12^((3^(n - 2) - 3)/2), {n, 3, 8}]] (* Eric W. Weisstein, Jun 17 2017 *)
    Join[{1, 1}, RecurrenceTable[{a[3] == 8, a[n] == (3 a[n - 1])^3}, a, {n, 3, 8}]] (* Eric W. Weisstein, Mar 25 2018 *)

Formula

For n >= 3, a(n) = 8 * 12^((3^(n-2)-3)/2).
For n >= 4, a(n) = (3*a(n-1))^3.

A246958 Number of directed Hamiltonian paths in the n-Sierpiński gasket graph that starts at the fixed corner.

Original entry on oeis.org

2, 6, 152, 811008, 15502126646034432, 8348302506064411039310051552485442040121786368
Offset: 1

Views

Author

Max Alekseyev, Sep 08 2014

Keywords

Comments

Explicit formula and asymptotic are given by Chang and Chen (2011).
a(7) contains 134 decimal digits.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{m}, If[n == 1, Return[2]]; m = 3^(n-2); 2^m*3^((m-1)/2)* (7*17/(2^4*3^3)*4^(n-1) + 2^2*13/3^3 - If[n == 2, 1/(2^2*3^2), 0])];
    Array[a, 6] (* Jean-François Alcover, Dec 04 2018, from PARI *)
  • PARI
    A246958(n) = if(n==1,return(2)); my(m=3^(n-2)); 2^m * 3^((m-1)/2) * ( 7*17/(2^4*3^3)*4^(n-1) + 2^2*13/(3^3) - if(n==2,1/(2^2*3^2) ) )

A246957 Numbers of (undirected) Hamiltonian paths in the n-Sierpiński gasket graph.

Original entry on oeis.org

3, 12, 552, 6978816, 429714433137180672, 868161947968780041877535786874146453722578812928
Offset: 1

Views

Author

Max Alekseyev, Sep 08 2014

Keywords

Comments

Explicit formula and asymptotic are given by Chang and Chen (2011).
a(7) contains 137 decimal digits.

Crossrefs

A288629 Number of (undirected) paths in the n-Sierpinski gasket graph.

Original entry on oeis.org

6, 108, 49194, 328040263752, 3114828284506941483786172285326
Offset: 1

Views

Author

Eric W. Weisstein, Jun 17 2017

Keywords

Crossrefs

Extensions

a(4) onwards from Andrew Howroyd, Aug 08 2024
Showing 1-4 of 4 results.