cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A246959 Numbers of (undirected) Hamiltonian cycles in the n-Sierpiński gasket graph.

Original entry on oeis.org

1, 1, 8, 13824, 71328803586048, 9798477119793909670551703700100284084649984
Offset: 1

Views

Author

Max Alekseyev, Sep 08 2014

Keywords

Crossrefs

Programs

  • Magma
    [1,1] cat [Floor(8 * 12^((3^(n-2)-3)/2)): n in [3..10]]; // Vincenzo Librandi, Jun 15 2015
  • Mathematica
    Join[{1, 1}, Table[8 12^((3^(n - 2) - 3)/2), {n, 3, 8}]] (* Eric W. Weisstein, Jun 17 2017 *)
    Join[{1, 1}, RecurrenceTable[{a[3] == 8, a[n] == (3 a[n - 1])^3}, a, {n, 3, 8}]] (* Eric W. Weisstein, Mar 25 2018 *)

Formula

For n >= 3, a(n) = 8 * 12^((3^(n-2)-3)/2).
For n >= 4, a(n) = (3*a(n-1))^3.

A246958 Number of directed Hamiltonian paths in the n-Sierpiński gasket graph that starts at the fixed corner.

Original entry on oeis.org

2, 6, 152, 811008, 15502126646034432, 8348302506064411039310051552485442040121786368
Offset: 1

Views

Author

Max Alekseyev, Sep 08 2014

Keywords

Comments

Explicit formula and asymptotic are given by Chang and Chen (2011).
a(7) contains 134 decimal digits.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{m}, If[n == 1, Return[2]]; m = 3^(n-2); 2^m*3^((m-1)/2)* (7*17/(2^4*3^3)*4^(n-1) + 2^2*13/3^3 - If[n == 2, 1/(2^2*3^2), 0])];
    Array[a, 6] (* Jean-François Alcover, Dec 04 2018, from PARI *)
  • PARI
    A246958(n) = if(n==1,return(2)); my(m=3^(n-2)); 2^m * 3^((m-1)/2) * ( 7*17/(2^4*3^3)*4^(n-1) + 2^2*13/(3^3) - if(n==2,1/(2^2*3^2) ) )

A234635 Numbers of directed Hamiltonian paths in the n-Sierpinski gasket graph.

Original entry on oeis.org

6, 24, 1104, 13957632, 859428866274361344, 1736323895937560083755071573748292907445157625856
Offset: 1

Views

Author

Eric W. Weisstein, Dec 28 2013

Keywords

Comments

Explicit formula and asymptotic are given by Chang and Chen (2011).
a(7) contains 137 decimal digits.

Crossrefs

Formula

a(n) = A246957(n)*2.

Extensions

a(5)-a(6) added by Max Alekseyev, Sep 08 2014

A234634 Numbers of undirected cycles in the n-Sierpinski gasket graph.

Original entry on oeis.org

1, 11, 1033, 1030304099, 873851166316875626844153297, 531723201747806346628696993678355296791302025810590916630277786972117723914960891
Offset: 1

Views

Author

Eric W. Weisstein, Dec 28 2013

Keywords

Comments

Term a(7) has 243 decimal digits and a(8) has 727 decimal digits. - Andrew Howroyd, Jun 18 2017

Crossrefs

Extensions

a(4)-a(6) from Andrew Howroyd, Jun 18 2017
Showing 1-4 of 4 results.