A236104
Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k copies of the positive squares in nondecreasing order, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
1, 4, 9, 1, 16, 1, 25, 4, 36, 4, 1, 49, 9, 1, 64, 9, 1, 81, 16, 4, 100, 16, 4, 1, 121, 25, 4, 1, 144, 25, 9, 1, 169, 36, 9, 1, 196, 36, 9, 4, 225, 49, 16, 4, 1, 256, 49, 16, 4, 1, 289, 64, 16, 4, 1, 324, 64, 25, 9, 1, 361, 81, 25, 9, 1, 400, 81, 25, 9, 4
Offset: 1
Triangle begins:
1;
4;
9, 1;
16, 1;
25, 4;
36, 4, 1;
49, 9, 1;
64, 9, 1;
81, 16, 4;
100, 16, 4, 1;
121, 25, 4, 1;
144, 25, 9, 1;
169, 36, 9, 1;
196, 36, 9, 4;
225, 49, 16, 4, 1;
256, 49, 16, 4, 1;
289, 64, 16, 4, 1;
324, 64, 25, 9, 1;
361, 81, 25, 9, 1;
400, 81, 25, 9, 4;
441, 100, 36, 9, 4, 1;
484, 100, 36, 16, 4, 1;
529, 121, 36, 16, 4, 1;
576, 121, 49, 16, 4, 1;
...
For n = 6 the sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 1 + 3 + 4 + 7 + 6 + 12 = 33. On the other hand the 6th row of triangle is 36, 4, 1, therefore the alternating row sum is 36 - 4 + 1 = 33, equaling the sum of all divisors of all positive integers <= 6.
Illustration of the alternating sum of the 6th row as the area of a polygon (or the number of cells), step by step, in the fourth quadrant:
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. | | | | | |
. | | | | | |
. | | | | | |
. | | | _ _| | _|
. | | | | | _|
. |_ _ _ _ _ _| |_ _ _ _| |_ _ _ _|
.
. 36 36 - 4 = 32 36 - 4 + 1 = 33
.
Then using this method we can draw a symmetric diagram for A000203, A024916, A004125, as shown below:
--------------------------------------------------
n A000203 A024916 Diagram
--------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _
1 1 1 |_| | | | | | | | | | | |
2 3 4 |_ _|_| | | | | | | | | |
3 4 8 |_ _| _|_| | | | | | | |
4 7 15 |_ _ _| _|_| | | | | |
5 6 21 |_ _ _| _| _ _|_| | | |
6 12 33 |_ _ _ _| _| | _ _|_| |
7 8 41 |_ _ _ _| |_ _|_| _ _|
8 15 56 |_ _ _ _ _| _| |* *
9 13 69 |_ _ _ _ _| | _|* *
10 18 87 |_ _ _ _ _ _| _ _|* * *
11 12 99 |_ _ _ _ _ _| |* * * * *
12 28 127 |_ _ _ _ _ _ _|* * * * *
.
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n). It appears that the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n). Example: for n = 12 the 12th row of triangle is 144, 25, 9, 1, hence the alternating sums is 144 - 25 + 9 - 1 = 127. On the other hand we have that A000290(12) - A004125(12) = 144 - 17 = A024916(12) = 127, equaling the total number of cells in the diagram after 12 stages. The number of cells in the 12th set of symmetric regions of the diagram is sigma(12) = A000203(12) = 28. Note that in this case there is only one region. Finally, the number of *'s is A004125(12) = 17.
Note that the diagram is also the top view of the stepped pyramid described in A245092. - _Omar E. Pol_, Feb 12 2018
Cf.
A000203,
A000217,
A000290,
A001227,
A003056,
A008794,
A024916,
A004125,
A196020,
A211343,
A228813,
A231345,
A231347,
A235791,
A235794,
A235799,
A236106,
A236112,
A236540,
A237270,
A237591,
A237593,
A239660,
A244050,
A245092,
A262626,
A286000.
-
Table[Ceiling[(n + 1)/k - (k + 1)/2]^2, {n, 20}, {k, Floor[(Sqrt[8 n + 1] - 1)/2]}] // Flatten (* Michael De Vlieger, Feb 10 2018, after Hartmut F. W. Hoft at A235791 *)
-
from sympy import sqrt
import math
def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2))
for n in range(1, 21): print([T(n, k)**2 for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # Indranil Ghosh, Apr 25 2017
A235791
Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k copies of every positive integer in nondecreasing order, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
1, 2, 3, 1, 4, 1, 5, 2, 6, 2, 1, 7, 3, 1, 8, 3, 1, 9, 4, 2, 10, 4, 2, 1, 11, 5, 2, 1, 12, 5, 3, 1, 13, 6, 3, 1, 14, 6, 3, 2, 15, 7, 4, 2, 1, 16, 7, 4, 2, 1, 17, 8, 4, 2, 1, 18, 8, 5, 3, 1, 19, 9, 5, 3, 1, 20, 9, 5, 3, 2, 21, 10, 6, 3, 2, 1, 22, 10, 6, 4, 2, 1, 23, 11, 6, 4, 2, 1, 24, 11, 7, 4, 2, 1
Offset: 1
Triangle begins:
1;
2;
3, 1;
4, 1;
5, 2;
6, 2, 1;
7, 3, 1;
8, 3, 1;
9, 4, 2;
10, 4, 2, 1;
11, 5, 2, 1;
12, 5, 3, 1;
13, 6, 3, 1;
14, 6, 3, 2;
15, 7, 4, 2, 1;
16, 7, 4, 2, 1;
17, 8, 4, 2, 1;
18, 8, 5, 3, 1;
19, 9, 5, 3, 1;
20, 9, 5, 3, 2;
21, 10, 6, 3, 2, 1;
22, 10, 6, 4, 2, 1;
23, 11, 6, 4, 2, 1;
24, 11, 7, 4, 2, 1;
25, 12, 7, 4, 3, 1;
26, 12, 7, 5, 3, 1;
27, 13, 8, 5, 3, 2;
28, 13, 8, 5, 3, 2, 1;
...
For n = 10 the 10th row of triangle is 10, 4, 2, 1, so we have that 10^2 - 4^2 + 2^2 - 1^2 = 100 - 16 + 4 - 1 = 87, the same as A024916(10) = 87, the sum of all divisors of all positive integers <= 10.
From _Omar E. Pol_, Nov 19 2015: (Start)
Illustration of initial terms in the third quadrant:
. y
Row _|
1 _|1|
2 _|2 _|
3 _|3 |1|
4 _|4 _|1|
5 _|5 |2 _|
6 _|6 _|2|1|
7 _|7 |3 |1|
8 _|8 _|3 _|1|
9 _|9 |4 |2 _|
10 _|10 _|4 |2|1|
11 _|11 |5 _|2|1|
12 _|12 _|5 |3 |1|
13 _|13 |6 |3 _|1|
14 _|14 _|6 _|3|2 _|
15 _|15 |7 |4 |2|1|
16 _|16 _|7 |4 |2|1|
17 _|17 |8 _|4 _|2|1|
18 _|18 _|8 |5 |3 |1|
19 _|19 |9 |5 |3 _|1|
20 _|20 _|9 _|5 |3|2 _|
21 _|21 |10 |6 _|3|2|1|
22 _|22 _|10 |6 |4 |2|1|
23 _|23 |11 _|6 |4 |2|1|
24 _|24 _|11 |7 |4 _|2|1|
25 _|25 |12 |7 _|4|3 |1|
26 _|26 _|12 _|7 |5 |3 _|1|
27 _|27 |13 |8 |5 |3|2 _|
28 |28 |13 |8 |5 |3|2|1|
...
T(n,k) is also the number of cells between the k-th vertical line segment (from left to right) and the y-axis in the n-th row of the structure.
Note that the number of horizontal line segments in the n-th row of the structure equals A001227(n), the number of odd divisors of n.
Also the diagram represents the left part of the front view of the pyramid described in A245092. (End)
For more information about the diagram see A286001. - _Omar E. Pol_, Dec 19 2020
From _Omar E. Pol_, Sep 08 2021: (Start)
For n = 12 the symmetric representation of sigma(12) in the fourth quadrant is as shown below:
_
| |
| |
| |
| |
| |
_ _ _| |
_| _ _|
_| |
| _|
| _ _|
_ _ _ _ _ _| |3 1
|_ _ _ _ _ _ _|
12 5
.
For n = 12 and k = 1 the total length of all line segments between the first vertex and the central vertex of the largest Dyck path is equal to 12, so T(12,1) = 12.
For n = 12 and k = 2 the total length of all line segments between the second vertex and the central vertex of the largest Dyck path is equal to 5, so T(12,2) = 5.
For n = 12 and k = 3 the total length of all line segments between the third vertex and the central vertex of the largest Dyck path is equal to 3, so T(12,3) = 3.
For n = 12 and k = 4 the total length of all line segments between the fourth vertex and the central vertex of the largest Dyck path is equal to 1, so T(12,4) = 1.
Hence the 12th row of triangle is [12, 5, 3, 1]. (End)
Cf.
A000203,
A000217,
A001227,
A196020,
A211343,
A228813,
A231345,
A231347,
A235794,
A236106,
A236112,
A237270,
A237271,
A237593,
A239660,
A245092,
A261699,
A262626,
A286000,
A286001,
A280850,
A280851,
A296508,
A335616.
-
row[n_] := Floor[(Sqrt[8*n + 1] - 1)/2]; f[n_, k_] := Ceiling[(n + 1)/k - (k + 1)/2]; Table[f[n, k], {n, 1, 150}, {k, 1, row[n]}] // Flatten (* Hartmut F. W. Hoft, Apr 07 2014 *)
-
row(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i); \\ Michel Marcus, Mar 27 2014
-
from sympy import sqrt
import math
def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2))
for n in range(1, 21): print([T(n, k) for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # Indranil Ghosh, Apr 25 2017
A196020
Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists the odd numbers interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
1, 3, 5, 1, 7, 0, 9, 3, 11, 0, 1, 13, 5, 0, 15, 0, 0, 17, 7, 3, 19, 0, 0, 1, 21, 9, 0, 0, 23, 0, 5, 0, 25, 11, 0, 0, 27, 0, 0, 3, 29, 13, 7, 0, 1, 31, 0, 0, 0, 0, 33, 15, 0, 0, 0, 35, 0, 9, 5, 0, 37, 17, 0, 0, 0, 39, 0, 0, 0, 3, 41, 19, 11, 0, 0, 1, 43, 0, 0, 7, 0, 0, 45, 21, 0, 0, 0, 0, 47, 0, 13, 0, 0, 0
Offset: 1
Triangle begins:
1;
3;
5, 1;
7, 0;
9, 3;
11, 0, 1;
13, 5, 0;
15, 0, 0;
17, 7, 3;
19, 0, 0, 1;
21, 9, 0, 0;
23, 0, 5, 0;
25, 11, 0, 0;
27, 0, 0, 3;
29, 13, 7, 0, 1;
31, 0, 0, 0, 0;
33, 15, 0, 0, 0;
35, 0, 9, 5, 0;
37, 17, 0, 0, 0;
39, 0, 0, 0, 3;
41, 19, 11, 0, 0, 1;
43, 0, 0, 7, 0, 0;
45, 21, 0, 0, 0, 0;
47, 0, 13, 0, 0, 0;
49, 23, 0, 0, 5, 0;
51, 0, 0, 9, 0, 0;
53, 25, 15, 0, 0, 3;
55, 0, 0, 0, 0, 0, 1;
...
For n = 15 the divisors of 15 are 1, 3, 5, 15, so the sum of divisors of 15 is 1 + 3 + 5 + 15 = 24. On the other hand, the 15th row of the triangle is 29, 13, 7, 0, 1, so the alternating row sum is 29 - 13 + 7 - 0 + 1 = 24, equaling the sum of divisors of 15.
If n is even then the alternating sum of the n-th row is simpler to evaluate than the sum of divisors of n. For example the sum of divisors of 24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60, and the alternating sum of the 24th row of triangle is 47 - 0 + 13 - 0 + 0 - 0 = 60.
From _Omar E. Pol_, Nov 24 2020: (Start)
For an illustration of the rows of triangle consider the infinite "double-staircases" diagram defined in A335616 (see also the theorem there).
For n = 15 the diagram with first 15 levels looks like this:
.
Level "Double-staircases" diagram
. _
1 _|1|_
2 _|1 _ 1|_
3 _|1 |1| 1|_
4 _|1 _| |_ 1|_
5 _|1 |1 _ 1| 1|_
6 _|1 _| |1| |_ 1|_
7 _|1 |1 | | 1| 1|_
8 _|1 _| _| |_ |_ 1|_
9 _|1 |1 |1 _ 1| 1| 1|_
10 _|1 _| | |1| | |_ 1|_
11 _|1 |1 _| | | |_ 1| 1|_
12 _|1 _| |1 | | 1| |_ 1|_
13 _|1 |1 | _| |_ | 1| 1|_
14 _|1 _| _| |1 _ 1| |_ |_ 1|_
15 |1 |1 |1 | |1| | 1| 1| 1|
.
The first largest double-staircase has 29 horizontal steps, the second double-staircase has 13 steps, the third double-staircase has 7 steps, and the fifth double-staircases has only one step. Note that the fourth double-staircase does not count because it does not have horizontal steps in the 15th level, so the 15th row of triangle is [29, 13, 7, 0, 1].
For a connection with the "Ziggurat" diagram and the parts and subparts of the symmetric representation of sigma(15) see also A237270. (End)
Cf.
A000203,
A000217,
A001227,
A001318,
A003056,
A211343,
A212119,
A228813,
A231345,
A231347,
A235791,
A235794,
A236104,
A236106,
A236112,
A237048,
A237271,
A237591,
A237593,
A238005,
A239660,
A244050,
A245092,
A261699,
A262626,
A286000,
A286001,
A280850,
A335616,
A338721.
-
T_row := proc(n) local T;
T := (n, k) -> if modp(n-k/2, k) = 0 and n >= k*(k+1)/2 then 2*n/k-k else 0 fi;
seq(T(n,k), k=1..floor((sqrt(8*n+1)-1)/2)) end:
seq(print(T_row(n)),n=1..24); # Peter Luschny, Oct 27 2015
-
T[n_, k_] := If[Mod[n - k*(k+1)/2, k] == 0 ,2*n/k - k, 0]
row[n_] := Floor[(Sqrt[8n+1]-1)/2]
line[n_] := Map[T[n, #]&, Range[row[n]]]
a196020[m_, n_] := Map[line, Range[m, n]]
Flatten[a196020[1,22]] (* data *)
(* Hartmut F. W. Hoft, Oct 26 2015 *)
A196020row = Function[n,Table[If[Divisible[Numerator[n-k/2],k] && CoprimeQ[ Denominator[n- k/2], k],2*n/k-k,0],{k,1,Floor[(Sqrt[8 n+1]-1)/2]}]]
Flatten[Table[A196020row[n], {n,1,24}]] (* Peter Luschny, Oct 28 2015 *)
-
def T(n,k):
q = (2*n-k)/2
b = k.divides(q.numerator()) and gcd(k,q.denominator()) == 1
return 2*n/k - k if b else 0
for n in (1..24): [T(n, k) for k in (1..floor((sqrt(8*n+1)-1)/2))] # Peter Luschny, Oct 28 2015
A236106
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the twice odd numbers (A016825) interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
2, 6, 10, 2, 14, 0, 18, 6, 22, 0, 2, 26, 10, 0, 30, 0, 0, 34, 14, 6, 38, 0, 0, 2, 42, 18, 0, 0, 46, 0, 10, 0, 50, 22, 0, 0, 54, 0, 0, 6, 58, 26, 14, 0, 2, 62, 0, 0, 0, 0, 66, 30, 0, 0, 0, 70, 0, 18, 10, 0, 74, 34, 0, 0, 0, 78, 0, 0, 0, 6, 82, 38, 22, 0, 0, 2
Offset: 1
Triangle begins:
2;
6;
10, 2;
14, 0;
18, 6;
22, 0, 2;
26, 10, 0;
30, 0, 0;
34, 14, 6;
38, 0, 0, 2;
42, 18, 0, 0;
46, 0, 10, 0;
50, 22, 0, 0;
54, 0, 0, 6;
58, 26, 14, 0, 2;
62, 0, 0, 0, 0;
66, 30, 0, 0, 0;
70, 0, 18, 10, 0;
74, 34, 0, 0, 0;
78, 0, 0, 0, 6;
82, 38, 22, 0, 0, 2;
86, 0, 0, 14, 0, 0;
90, 42, 0, 0, 0, 0;
94, 0, 26, 0, 0, 0;
...
For n = 9 the divisors of 2*9 = 18 are 1, 2, 3, 6, 9, 18, therefore the sum of the even divisors of 18 is 2 + 6 + 18 = 26. On the other hand the 9th row of triangle is 34, 14, 6, therefore the alternating row sum is 34 - 14 + 6 = 26, equaling the sum of the even divisors of 18.
If n is even then the alternating sum of the n-th row of triangle is simpler than the sum of the even divisors of 2n. Example: for n = 12 the sum of the even divisors of 2*12 = 24 is 2 + 4 + 6 + 8 + 12 + 24 = 56, and the alternating sum of the 12th row of triangle is 46 - 0 + 10 - 0 = 56.
Cf.
A000203,
A000217,
A001227,
A003056,
A016825,
A074400,
A196020,
A211343,
A228813,
A231345,
A231347,
A235791,
A235794,
A236104,
A236112.
A236112
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists k+1 copies of the squares in nondecreasing order, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 4, 0, 4, 1, 0, 9, 1, 0, 9, 1, 0, 16, 4, 0, 16, 4, 1, 0, 25, 4, 1, 0, 25, 9, 1, 0, 36, 9, 1, 0, 36, 9, 4, 0, 49, 16, 4, 1, 0, 49, 16, 4, 1, 0, 64, 16, 4, 1, 0, 64, 25, 9, 1, 0, 81, 25, 9, 1, 0, 81, 25, 9, 4, 0, 100, 36, 9, 4, 1, 0, 100, 36, 16, 4, 1, 0, 121, 36, 16, 4, 1, 0, 121, 49, 16, 4, 1, 0
Offset: 1
Triangle begins:
0;
0;
1, 0;
1, 0;
4, 0;
4, 1, 0;
9, 1, 0;
9, 1, 0;
16, 4, 0;
16, 4, 1, 0;
25, 4, 1, 0;
25, 9, 1, 0;
36, 9, 1, 0;
36, 9, 4, 0;
49, 16, 4, 1, 0;
49, 16, 4, 1, 0;
64, 16, 4, 1, 0;
64, 25, 9, 1, 0;
81, 25, 9, 1, 0;
81, 25, 9, 4, 0;
100, 36, 9, 4, 1, 0;
100, 36, 16, 4, 1, 0;
121, 36, 16, 4, 1, 0;
121, 49, 16, 4, 1, 0;
...
For n = 24 the 24th row of triangle is 121, 49, 16, 4, 1, 0 therefore the alternating row sum is 121 - 49 + 16 - 4 + 1 - 0 = 85 equaling A004125(24).
Cf.
A000203,
A000217,
A000290,
A003056,
A004125,
A120444,
A196020,
A211343,
A228813,
A231345,
A231347,
A235791,
A235794,
A236104,
A236106,
A237048,
A237591,
A237593,
A261699.
A231345
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the odd numbers interleaved with k-1 zeros but T(n,1) = -1 and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
-1, -1, -1, 1, -1, 0, -1, 3, -1, 0, 1, -1, 5, 0, -1, 0, 0, -1, 7, 3, -1, 0, 0, 1, -1, 9, 0, 0, -1, 0, 5, 0, -1, 11, 0, 0, -1, 0, 0, 3, -1, 13, 7, 0, 1, -1, 0, 0, 0, 0, -1, 15, 0, 0, 0, -1, 0, 9, 5, 0, -1, 17, 0, 0, 0, -1, 0, 0, 0, 3, -1, 19, 11, 0, 0, 1
Offset: 1
Triangle begins:
-1;
-1;
-1, 1;
-1, 0;
-1, 3;
-1, 0, 1;
-1, 5, 0;
-1, 0, 0;
-1, 7, 3;
-1, 0, 0, 1;
-1, 9, 0, 0;
-1, 0, 5, 0;
-1, 11, 0, 0;
-1, 0, 0, 3;
-1, 13, 7, 0, 1;
-1, 0, 0, 0, 0;
-1, 15, 0, 0, 0;
-1, 0, 9, 5, 0;
-1, 17, 0, 0, 0;
-1, 0, 0, 0, 3;
-1, 19, 11, 0, 0, 1;
-1, 0, 0, 7, 0, 0;
-1, 21, 0, 0, 0, 0;
-1, 0, 13, 0, 0, 0;
...
For n = 15 the divisors of 15 are 1, 3, 5, 15 hence the abundance of 15 is 1 + 3 + 5 + 15 - 2*15 = 1 + 3 + 5 - 15 = -6. On the other hand the 15th row of triangle is -1, 13, 7, 0, 1, hence the alternating row sum is -1 - 13 + 7 - 0 + 1 = -6, equalling the abundance of 15.
If n is even then the alternating sum of the n-th row of triangle is simpler than the sum of divisors of n minus 2*n. Example: the sum of divisors of 24 minus 2*24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 - 2*24 = 60 - 48 = 12, and the alternating sum of the 24th row of triangle is -1 - 0 + 13 - 0 + 0 - 0 = 12.
Cf.
A000203,
A000217,
A000396,
A003056,
A005100,
A005843,
A033879,
A033880,
A069283,
A196020,
A212119,
A228813,
A231347,
A235791,
A235794,
A236104,
A236106,
A236112,
A237593.
A231347
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the odd numbers interleaved with k-1 zeros but T(n,1) = n - 1 and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
0, 1, 2, 1, 3, 0, 4, 3, 5, 0, 1, 6, 5, 0, 7, 0, 0, 8, 7, 3, 9, 0, 0, 1, 10, 9, 0, 0, 11, 0, 5, 0, 12, 11, 0, 0, 13, 0, 0, 3, 14, 13, 7, 0, 1, 15, 0, 0, 0, 0, 16, 15, 0, 0, 0, 17, 0, 9, 5, 0, 18, 17, 0, 0, 0, 19, 0, 0, 0, 3, 20, 19, 11, 0, 0, 1, 21, 0, 0, 7, 0, 0
Offset: 1
Triangle begins:
0;
1;
2, 1;
3, 0;
4, 3;
5, 0, 1;
6, 5, 0;
7, 0, 0;
8, 7, 3;
9, 0, 0, 1;
10, 9, 0, 0;
11, 0, 5, 0;
12, 11, 0, 0;
13, 0, 0, 3;
14, 13, 7, 0, 1;
15, 0, 0, 0, 0;
16, 15, 0, 0, 0;
17, 0, 9, 5, 0;
18, 17, 0, 0, 0;
19, 0, 0, 0, 3;
20, 19, 11, 0, 0, 1;
21, 0, 0, 7, 0, 0;
22, 21, 0, 0, 0, 0;
23, 0, 13, 0, 0, 0;
...
For n = 15 the aliquot divisors of 15 are 1, 3, 5, therefore the sum of aliquot divisors of 15 is 1 + 3 + 5 = 9. On the other hand the 15th row of triangle is 14, 13, 7, 0, 1, hence the alternating row sum is 14 - 13 + 7 - 0 + 1 = 9, equalling the sum of aliquot divisors of 15.
If n is even then the alternating sum of the n-th row of triangle is simpler than the sum of aliquot divisors of n. Example: the sum of aliquot divisors of 24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 = 36, and the alternating sum of the 24th row of triangle is 23 - 0 + 13 - 0 + 0 - 0 = 36.
Cf.
A000217,
A001065,
A001227,
A000203,
A003056,
A196020,
A211343,
A212119,
A228813,
A231345,
A235791,
A235794,
A236104,
A236106,
A236112,
A237591,
A237593,
A286001.
A236540
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists k copies of the positive squares in nondecreasing order, except the first column which lists the triangular numbers, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
0, 1, 3, 1, 6, 1, 10, 4, 15, 4, 1, 21, 9, 1, 28, 9, 1, 36, 16, 4, 45, 16, 4, 1, 55, 25, 4, 1, 66, 25, 9, 1, 78, 36, 9, 1, 91, 36, 9, 4, 105, 49, 16, 4, 1, 120, 49, 16, 4, 1, 136, 64, 16, 4, 1, 153, 64, 25, 9, 1, 171, 81, 25, 9, 1, 190, 81, 25, 9, 4, 210, 100, 36, 9, 4, 1
Offset: 1
Triangle begins:
0;
1;
3, 1;
6, 1;
10, 4;
15, 4, 1;
21, 9, 1;
28, 9, 1;
36, 16, 4;
45, 16, 4, 1;
55, 25, 4, 1;
66, 25, 9, 1;
78, 36, 9, 1;
91, 36, 9, 4;
105, 49, 16, 4, 1;
120, 49, 16, 4, 1;
136, 64, 16, 4, 1;
153, 64, 25, 9, 1;
171, 81, 25, 9, 1;
190, 81, 25, 9, 4;
210, 100, 36, 9, 4, 1;
231, 100, 36, 16, 4, 1;
253, 121, 36, 16, 4, 1;
276, 121, 49, 16, 4, 1;
...
For n = 6 the divisors of all positive integers <= 6 are [1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6] hence the sum of all aliquot divisors is [0] + [1] + [1] + [1+2] + [1] + [1+2+3] = 0 + 1 + 1 + 3 + 1 + 6 = 12. On the other hand the 6th row of triangle is 15, 4, 1, therefore the alternating row sum is 15 - 4 + 1 = 12, equaling the sum of all aliquot divisors of all positive integers <= 6.
Cf.
A000203,
A000217,
A001065,
A008794,
A003056,
A153485,
A196020,
A211547,
A211343,
A228813,
A231345,
A231347,
A235791,
A235794,
A235799,
A236104,
A236106,
A236112,
A237591,
A237593,
A286001.
A239446
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the elements of A004273 interleaved with k zeros, and the first element of column k is in row k*(k+1)/2.
Original entry on oeis.org
0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 7, 3, 0, 0, 0, 1, 0, 9, 0, 0, 0, 0, 5, 0, 0, 11, 0, 0, 0, 0, 0, 3, 0, 13, 7, 0, 1, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 9, 5, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 3, 0, 19, 11, 0, 0, 1, 0, 0, 0, 7, 0, 0, 0, 21, 0
Offset: 1
Triangle begins:
0;
0;
1, 0;
0, 0;
3, 0;
0, 1, 0;
5, 0, 0;
0, 0, 0;
7, 3, 0;
0, 0, 1, 0;
9, 0, 0, 0;
0, 5, 0, 0;
11, 0, 0, 0;
0, 0, 3, 0;
13, 7, 0, 1, 0;
0, 0, 0, 0, 0;
15, 0, 0, 0, 0;
0, 9, 5, 0, 0;
17, 0, 0, 0, 0;
0, 0, 0, 3, 0;
19, 11, 0, 0, 1, 0;
0, 0, 7, 0, 0, 0;
21, 0, 0, 0, 0, 0;
0, 13, 0, 0, 0, 0;
23, 0, 0, 5, 0, 0;
...
For n = 15 the 15th row of triangle is 13, 7, 0, 1, and the alternating sum is 13 - 7 + 0 - 1 = A235796(15) = 5.
Cf.
A000203,
A000217,
A003056,
A004125,
A004273,
A196020,
A231345,
A231347,
A235791,
A235794,
A235796,
A236106,
A236104,
A236112,
A237048,
A237588,
A237591,
A239313.
A239313
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the odd numbers interleaved with k-1 zeros, except the first column which lists 0 together with the nonnegative integers, and the first element of column k is in row k*(k+1)/2.
Original entry on oeis.org
0, 0, 1, 1, 2, 0, 3, 3, 4, 0, 1, 5, 5, 0, 6, 0, 0, 7, 7, 3, 8, 0, 0, 1, 9, 9, 0, 0, 10, 0, 5, 0, 11, 11, 0, 0, 12, 0, 0, 3, 13, 13, 7, 0, 1, 14, 0, 0, 0, 0, 15, 15, 0, 0, 0, 16, 0, 9, 5, 0, 17, 17, 0, 0, 0, 18, 0, 0, 0, 3, 19, 19, 11, 0, 0, 1, 20, 0, 0, 7, 0, 0
Offset: 1
Triangle begins (row n = 1..24):
0;
0;
1, 1;
2, 0;
3, 3;
4, 0, 1;
5, 5, 0;
6, 0, 0;
7, 7, 3;
8, 0, 0, 1;
9, 9, 0, 0;
10, 0, 5, 0;
11, 11, 0, 0;
12, 0, 0, 3;
13, 13, 7, 0, 1;
14, 0, 0, 0, 0;
15, 15, 0, 0, 0;
16, 0, 9, 5, 0;
17, 17, 0, 0, 0;
18, 0, 0, 0, 3;
19, 19, 11, 0, 0, 1;
20, 0, 0, 7, 0, 0;
21, 21, 0, 0, 0, 0;
22, 0, 13, 0, 0, 0;
...
For n = 15 the divisors of 15 are 1, 3, 5, 15 therefore the sum of divisors of 15 except 1 and 15 is 3 + 5 = 8. On the other hand the 15th row of triangle is 13, 13, 7, 0, 1, hence the alternating row sum is 13 - 13 + 7 - 0 + 1 = 8, equalling the sum of divisors of 15 except 1 and 15.
If n is even then the alternating sum of the n-th row of triangle is simpler than the sum of divisors of n, except 1 and n. Example: the sum of divisors of 24 except 1 and 24 is 2 + 3 + 4 + 6 + 8 + 12 = 35, and the alternating sum of the 24th row of triangle is 22 - 0 + 13 - 0 + 0 - 0 = 35.
Cf.
A000203,
A000217,
A001065,
A001227,
A001477,
A193356,
A196020,
A211343,
A212119,
A228813,
A231345,
A231347,
A235791,
A235794,
A236104,
A236106,
A236112.
Showing 1-10 of 11 results.
Comments